ECE ECE145A (undergrad) and ECE218A (graduate)

Final Exam. Tuesday, December 10, 12-3 p.m.

Do not open exam until instructed to.

Open notes, open books, etc

You have 3 hrs.

Use all reasonable approximations (5% accuracy is fine.), *AFTER STATING THEM. Hint: Stop and think before doing complicated calculations.* For some problems, there is an easier way.

Problem	Points Received	Points Possible
1a		15
1b		10
1c		5
1d		10
2a		10
2b		5
2c		10
2d		5
2e		10
3a		5
3b		5
3c		5
3d		10
4a		10
4b		10
total		120

Problem 1, 30 points

stability

Draw the *load* stability circle on the graph below:

(to do this perfectly, you would need a compass: you can sketch most of the curve, but be sure to plot *exactly* the points where the stability circle crosses the real axis, i.e. the x-axis.)

part b, 10 points

Continuing with part A above, you must add either a parallel or a series resistance on the *output* to make the device unconditionally stable. *Only one of the two choices will work*. Should you use a parallel or a series element ? What value should you use ?

Parallel or series ? _____

R=_____

part c, 5 points

Continuing with part A above, after stabilization, if we then impedance-match on input and output, what will be the resulting power gain ?

Power gain = _____

part d, 10 points

A bipolar transistor in common-emitter mode has the source and load stability circles below at 10GHz. The magnitude of S11 and of S22 are both less than 1 at this frequency. Draw circuit diagrams of *three* different stabilization circuits, giving element values, where the stabilization is set at the value minimum necessary to obtain unconditional stability.

Problem 2, 35 points

2-port parameters and signal flow graphs

part a, 10 pointsThe network at the right is for DC blocking.If we want ||S11|| < -40 dB at 1GHz, what is the
minimum value of the capacitor ?If we want ||S11|| < -40 dB at 1GHz, what is the
minimum value of the capacitor ?Assume a 50 Ohm impedance standard.Minimum value of C to meet S21 specification=Minimum value of C to meet S11 specification=

part b, 5 points

The signal flow graph to the right	S ^x ₂₁ S ^y ₂₁
represents the cascade of two-ports "x" and	$\rightarrow \qquad \qquad$
"y". If we call the combined network "z",	$S_{11}^{x} S_{22}^{x} S_{11}^{y} S_{22}^{y}$
find S_{21}^{Z} and S_{12}^{Z}	$ \longrightarrow $
	S ^x ₁₂ S ^y ₁₂

S^{*Z*}₂₁=_____

S^{*Z*}₁₂=_____

part c, 10 points

The signal flow graph above represents the cascade of two-ports "x", "y", and "z" If we call the combined network "a", find S_{21}^{a}

S^{*a*}₂₁=_____

part d, 5 points

*Y*₂₁ / *Y*₁₂ =_____

 $Y_{21}/Y_{12} \cong$

part e, 10 points

The network (A) above can be represented as the cascaded network (B) below. *If we assume* that the network is potentially unstable (it will be at lower frequencies), find an expression for the maximum stable gain.

MSG=_____

Problem 3, 25 points

part a, 5 points

The device is directly connected to a 50 Ohm generator with 1 microwatt available power, and is directly connected to a 50 Ohm load. Find the RF power in the load.

*P*_{*Load*} =_____

part b, 5 points

The device is connected to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedance-matching network to a 50 Ohm load. Find the power in the load.

 $P_{Load} =$ _____

part c, 5 points

The device is connected via a conjugate impedance-matching network to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedance-matching network to a 50 Ohm load. Find the power in the load. Find the source and load impedances presented to the transistor.

$P_{Load} = \underline{\qquad} Z_{source} \underline{\qquad} Z_{Load} = \underline{\qquad}$

part d, 10 points

Using the impedance-matching networks of part C (they are NOT CHANGED for part d), the device is now connected to a 25 Ohm generator with 1 microwatt available power, and is directly connected to a 100 Ohm load. Find the RF power in the load.

*P*_{*Load*} =_____

Problem 4, 20 points

more gain relationships

At 1 GHz, a MOSFET in common-source mode operating and available gain circles as shown. Find the optimum generator and load impedances (in complex Ohms). Assume 50Ohm normalization.

Z_{source}____Z_{Load} =_____

part b, 10 points

Working with the gain circles of part (a), if the transistor has $S_{12}=0$ and $S_{21}=10$, find the transistor's S_{11} and S_{22} and find the transistor's maximum available gain.

*S*₁₁=_____

*S*₂₂=_____

MAG=_____