ECE ECE145A (undergrad) and ECE218A (graduate)

Final Exam. Tuesday, December 10, 12-3 p.m.

Do not open exam until instructed to.
Open notes, open books, etc
You have 3 hrs.
Use all reasonable approximations (5\% accuracy is fine.) , AFTER STATING THEM. Hint: Stop and think before doing complicated calculations. For some problems, there is an easier way.

Problem	Points Received	Points Possible
1a		15
1b		10
1c		5
1d		10
2a		10
2b		5
2c		10
2d		5
2e		10
3a		5
3b		5
3c		5
3d		10
4a		10
4b	10	
total	120	

Name:
$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}} \quad G_{P}=\frac{1}{1-\Gamma_{i n}{ }^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\Gamma_{\text {out }}{ }^{2}} \quad G_{\text {max }}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$ if $K<1$
$K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$

Problem 1, 30 points
stability
part a, 15 points

Draw the *load* stability circle on the graph below:
(to do this perfectly, you would need a compass: you can sketch most of the curve, but be sure to plot *exactly* the points where the stability circle crosses the real axis, i.e. the xaxis.)

part b, 10 points
Continuing with part A above, you must add either a parallel or a series resistance on the *output* to make the device unconditionally stable. Only one of the two choices will work. Should you use a parallel or a series element? What value should you use ?

Parallel or series ?
$\mathrm{R}=$
part c, 5 points
Continuing with part A above, after stabilization, if we then impedance-match on input and output, what will be the resulting power gain?

Power gain $=$

part d, 10 points

A bipolar transistor in common-emitter mode has the source and load stability circles below at 10 GHz . The magnitude of S11 and of S22 are both less than 1 at this frequency. Draw circuit diagrams of *three* different stabilization circuits, giving element values, where the stabilization is set at the value minimum necessary to obtain unconditional stability.

Problem 2, 35 points

2-port parameters and signal flow graphs
part a, 10 points
The network at the right is for DC blocking.
If we want $\|\mathrm{S} 21\|>-3 \mathrm{~dB}$ at 1 GHz , what is the
minimum value of the capacitor?
If we want $\|\mathrm{S} 11\|<-40 \mathrm{~dB}$ at 1 GHz , what is the
minimum value of the capacitor?
Assume a 50 Ohm impedance standard.

Minimum value of C to meet S 21 specification= \qquad
Minimum value of C to meet S 11 specification= \qquad
part b, 5 points

$S_{21}^{Z}=$
$S_{12}^{Z}=$
part c, 10 points

The signal flow graph above represents the cascade of two-ports "x", "y", and "z" If we call the combined network "a", find S_{21}^{a}
$S_{21}^{a}=$
part d, 5 points

It can be proved that $S_{21} / S_{12}=Y_{21} / Y_{12}$ for any two-port. For the circuit to the right, find Y_{21} / Y_{12}. After finding an exact answer, assume that $g_{m} \gg \omega C_{g d}$ to find a simpler answer.	

$Y_{21} / Y_{12}=$ \qquad
$Y_{21} / Y_{12} \cong$ \qquad

part e, 10 points

The network (A) above can be represented as the cascaded network (B) below. If we assume that the network is potentially unstable (it will be at lower frequencies), find an expression for the maximum stable gain.

MSG= \qquad

Problem 3, 25 points
gain definitions

part a, 5 points
The device is directly connected to a 50 Ohm generator with 1 microwatt available power, and is directly connected to a 50 Ohm load. Find the RF power in the load.
$P_{\text {Load }}=$ \qquad

part b, 5 points

The device is connected to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedance-matching network to a 50 Ohm load. Find the power in the load.
$P_{\text {Load }}=$
part c, 5 points
The device is connected via a conjugate impedance-matching network to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedancematching network to a 50 Ohm load. Find the power in the load. Find the source and load impedances presented to the transistor.
$P_{\text {Load }}=\ldots Z_{\text {source }}=Z_{\text {Load }}=$

part d, 10 points

Using the impedance-matching networks of part C (they are NOT CHANGED for part d), the device is now connected to a 25 Ohm generator with 1 microwatt available power, and is directly connected to a 100 Ohm load. Find the RF power in the load.
$P_{\text {Load }}=$

Problem 4, 20 points

more gain relationships
part a, 10 points

At 1 GHz , a MOSFET in common-source mode operating and available gain circles as shown. Find the optimum generator and load impedances (in complex Ohms). Assume 500hm normalization.

$$
Z_{\text {source_____ }} Z_{\text {Load }}=
$$

part b, 10 points

Working with the gain circles of part (a), if the transistor has $S_{12}=0$ and $S_{21}=10$, find the transistor's S_{11} and S_{22} and find the transistor's maximum available gain.
$S_{11}=$
$S_{22}=$ \qquad
$\mathrm{MAG}=$

