ECE ECE145A (undergrad) and ECE218A (graduate)

Final Exam. Tuesday, December 10, 12-3 p.m.

Do not open exam until instructed to.
Open notes, open books, etc. You have 3 hrs.
Use all reasonable approximations (5\% accuracy is fine.),
AFTER STATING and justifiying THEM.
Think before doing complex calculations. Sometimes there is an easier way.

Problem	Points Received	Points Possible
1a		5
1b		5
1c		5
1d		5
1e		5
1f		5
2		10
3		10
4 a	5	
4 b		5
5 a		5
5 b	5	
5 c		10
6a		10
6b		10
total		100

Name: \qquad
$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}} \quad G_{P}=\frac{1}{1-\left\|\Gamma_{i n}\right\|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left\|\Gamma_{\text {out }}\right\|^{2}} \quad G_{\max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$. if $K<1 \quad K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$
Unconditionally stable if : (1) $\mathrm{K}>1$ and (2) $\|\operatorname{det}[S]\|<1$

Problem 1, 30 points
gain definitions

| At a signal frequency of 1 GHz , a two-port |
| :--- | :--- |
| has $S_{11}=0.6, S_{12}=1 / 4, S_{21}=2$ and $S_{22}=0$, |
| as defined with a 50 Ohm impedance |
| reference. |

part a, 5 points
If the 2-port were directly connected to 50 Ohm load, and a 50 Ohm generator with 10 mW available power, what would be the power dissipated in the load ?
part b, 5 points
If the load is an open circuit (infinity Ohms), then what is the input impedance ?
part c, 5 points
If you were to first stabilize (if necessary) and then impedance match the input and output to 50 Ohms , and drive the input with generator of 10 mW available power, what would be the power delivered to the load?
part d, 5 points
If you were to load the 2-port, without matching or stabilization elements, with a 150 Ohm load, is it possible to select a generator impedance which would cause the 2-port to oscillate?
part e, 5 points
If you were to load the 2-port, without stabilization elements, in 50 Ohms, and then impedance-match the input to a 50 Ohm generator with 10 mW available source power, what would be the power in the load?

part f, 5 points

If you were to take the 2-port, without stabilization elements, connect the input directly to a 500 Ohm generator with 10 mW available source power, and then connect the output directly to a 150 Ohm load, what would be the power in the load?

Problem 2, 10 points

Stabilization

Source stability circle

A MOSFET in common-source mode has $\left\\|S_{11}\right\\|$ and $\left\\|S_{22}\right\\|$ both less than 1. . Source and
load stability circles are as shown. The Smith charts use 50 Ohms impedance
normalization. Draw $* * 2 * * *$ circuit diagrams, giving resistor values, of methods of
stabilizing the transistor. Please draw your answers in the 3 boxes to the right and
below
circuit \#1

Problem 3, 10 points

Gain circles

A FET in common-source mode has operating and available gain circles as shown. Find the optimum generator and load impedances (in complex Ohms).
optimum source impedance= \qquad
optimum load impedance= \qquad

Problem 4, 10 points

2 -port parameters and gains.

Examining the figure above, we note that network E can be represented as a cascade of networks A-D. Note also that it can be easily shown that $S_{21} / S_{12}=Y_{21} / Y_{12}$ for any 2-port network.
part a, 5 points
Compute Y_{21} and Y_{12} of network C.
\qquad $Y_{12}=$

part b, 5 points

Find S_{21} / S_{12} of network E.
$S_{21} / S_{12}=$
State your arguments clearly*. Points will be deducted it steps are not justified.
This analysis explain why transistor maximum stable gain tends to have specific variation with frequency.

Problem 5, 20 points

Transistor cutoff frequencies and gain relationships.
part a, 5 points

$\mathrm{MAG}=$
part b: 5 points
Give expressions for the optimum generator and load impedances.
The answers must be in clear, simple, and tractable form.
Zgen,opt=
ZL,opt=
part c: 10 points

| Compute, as a function of $R_{b e} C_{b e}, g_{m}$, |
| :--- | :--- |
| $C_{c e}$ and $R_{c e}$ the maximum available power |
| gain as a function of frequency. Find also |
| the $f_{\text {max }}$ of the transistor |
| 1) the answer must be in a clear, simple,
 and tractable form. |

$\mathrm{MAG}=$ \qquad
$f_{\text {max }}=$ \qquad
(this answer should give some insight into high-frequency transistor design considerations).

Problem 6, 20 points
Power amplifier design.

A MOSFET has large-signal parameters as given above and small-signal parameters as given below:
$g_{m}=1.0 \mathrm{mS} / \mu m \cdot W_{g} \quad R_{i}=1.0 / g_{m} \quad C_{g d}=0.0 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g} \quad C_{g s}=1.0 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$ $C_{d s}=0.5 \mathrm{fF} / \mu \mathrm{m} \cdot \mathrm{W}_{g} G_{d s}=0 \mathrm{mS} / \mu \mathrm{m} \cdot W_{g}$
part a, 10 points
You will use a FET of 50 microns total gate width. The signal frequency is 15.9 GHz . What this the maximum linear RF output power? What is the optimum load (give either load impedance or load admittance) ?

Pout, max $=$ \qquad
Yload= \qquad
or
Zload= \qquad

part b, 10 points

The amplifier has a properly-designed input matching network. With the output power you calculated above, what available generator power is required?

Available generator power $=$

