ECE ECE145A (undergrad) and ECE218A (graduate)

Final Exam. Tuesday, December 8, 12-3 p.m.
Do not open exam until instructed to.
Open notes, open books, etc. You have 3 hrs.
Use all reasonable approximations (5\% accuracy is fine.),
AFTER STATING and justifying THEM.
Think before doing complex calculations. Sometimes there is an easier way.

Problem	Points Received	Points Possible
1a		5
1b		7
2a		7
2b		5
3a		5
3b		7
3c		8
3d		5
3e		5
3f		5
4a		5
4b		7
4c		5
4d	5	
5a		6
5b		5
5c		8
total		100

Name:
$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}} \quad G_{P}=\frac{1}{1-\left\|\Gamma_{i n}\right\|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left\|\Gamma_{\text {out }}\right\|^{2}} \quad G_{\max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$. if $K<1 \quad K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$
Unconditionally stable if : (1) $\mathrm{K}>1$ and (2) $\|\operatorname{det}[S]\|<1$

Problem 1, 12 points

Two-port properties, Gain relationships
part a, 5 points

part b, 7 points
Find the short-circuit current gain and the maximum available power gain at 60 GHz

Problem 2, 12 points
Potentially unstable amplifier design
part a, 7 points
At a design frequency of 1 GHz , a common-source FET has source and load stability circles as below

Given that $S 11=0.5$ and $S 22=1.1$ at 1 GHz , draw two stabilization circuits in the boxes below, giving element values

Solution 1	Solution 2

part b, 5 points
A FET has available and operating gain circles as below at 1 GHz .

Assuming a 50Ohm impedance normalization, what are the optimum generator and load impedances?

$$
Z_{\text {gen,opt }}=\square \quad Z_{l, o p t}=
$$

Problem 3, 35 points

Power gains and stability

The transistor has $\mathrm{S} 11=0, \mathrm{~S} 12=0.1, \mathrm{~S} 21=8$,		2
$\mathrm{~S} 22=0.5$	1	

part a, 5 points
If the load impedance is an open-circuit, what is the input reflection coefficient?
$\Gamma_{i n}=$

part b, 7 points

Is it necessary to stabilize the device before simultaneous input and output matching to it ? Assuming that you have stabilized, if necessary, or have not stabilized (if not necessary), what power gain will you obtain after matching on both input and output?

Unconditionally Stable?
Power gain after simultaneous matching=

part c, 8 points

(hard thinking, ok math): Can you determine from the S-parameters above what values of source reflection coefficient would lead to potential instability? Can you determine the necessary value of parallel input stabilization resistance?
part d, 5 points
Without stabilizing the FET, the FET is connected to a 100 Ohm generator, with 1 mW available power, and a 100 Ohm load. Find the power in the load

$$
P_{L}=
$$

part e, 5 points
Without stabilizing the FET, the FET is connected to a 50 Ohm generator, with 1 mW available power, and a 50 Ohm load. Find the power in the load
$P_{L}=$

part f, 5 points

Without stabilizing the device, the generator, with 1 mW available power, is impedancematched to the FET input, and is then connected directly to a 100 Ohm load. Find the power in the load
$P_{L}=$ \qquad

Problem 4, 22 points

parameters and Siow	
A transistor has the following s-parameters: $\begin{aligned} & \mathrm{S} 11=0.5 \\ & \mathrm{~S} 22=0.25 \\ & \text { S12 }=0.5 \\ & \text { S21 }=5 \end{aligned}$	
A second two-port consists of a 25 Ohm resistor between its input and output ports	

part a, 5 points
Using a 50 Ohm impedance standard, compute the four S-parameters of the resistor network.
S11=
S12=
S21=
S22=

part b, 7 points

The resistor network is connected between to the FET input. Compute the four Sparameters of the combined network.
S11=
S12=
S21=
S22=
part c, 5 points
Y-parameters

part d, 5 points
Z-parameters

Problem 5, 19 points
Power amplifier design

An HBT has the output characteristics as shown, with a maximum $2 \mathrm{~mA} /$ micron collector current. The (somewhat contrived) device model is to the right, with
$g_{m}=20.0 m S / \mu m \cdot L_{E} \quad R_{b b}=20 \Omega-\mu m / L_{E} \quad C_{b e}=g_{m} \tau_{f}$, where $\tau_{f}=0.5 \mathrm{ps}$, $C_{C E}=2 \mathrm{fF} / \mu \mathrm{m} \cdot L_{E}$
part a, 6 points
The optimum load admittance is parallel combination of a conductance G and an inductive susceptance. Setting G to 40 milliSiemens, and setting the signal frequency to 100 GHz , find (1) the appropriate HBT emitter length Le and (2) the required parallel load inductance L .

part b, 5 points

What is the maximum saturated output power ? What is the correct collector bias voltage and collector bias current?
part c, 8 points
After impedance-matching on the amplifier input and output, what is the amplifier power gain?

