ECE ECE145A (undergrad) and ECE218A (graduate)

Final Exam. Monday December 9, 2019, noon-3 p.m
Open book. You have 3 hrs .
Use all reasonable approximations (5\% accuracy is fine.) ,
AFTER STATING and justifying THEM.
Think before doing complex calculations. Sometimes there is an easier way.

Problem	Points Received	Points Possible
1A		5
1B		5
1C		7 (218A only $)$
2A		5
2B		10
3A		5
3B		10 (218A only $)$
3C		5
3D		10
4A		5
4B		5
4C		5
4D		10
5A		7
5B		5
5C		$10(218 \mathrm{~A}$ only $)$
total	$87(145 \mathrm{~A}), 114$ (218A)	

$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}} \quad G_{P}=\frac{1}{1-\left\|\Gamma_{i n}\right\|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left\|\Gamma_{\text {out }}\right\|^{2}} \quad G_{\max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$. if $K<1 \quad K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$
Unconditionally stable if : (1) $\mathrm{K}>1$ and (2) $\|\operatorname{det}[S]\|<1$

Problem 1, 10 points (145A), 17 points (218A)
Transistor two-port properties, Gain relationships

part a, 5 points

What are f_{τ} and $f_{\text {max }}$ for this transistor ?
$f_{\tau}=$ \qquad GHz
$f_{\text {max }}=$ \qquad GHz
part b, 5 points
You are going to use the transistors at 60 GHz signal frequency. What power gain would you expect to get after impedance, matching ?
What would be the correct generator impedance and load impedance to obtain this power gain?

Gain = \qquad dB
Source impedance = \qquad Ohms
Load impedance $=$ \qquad Ohms

part c, 7 points (218A students only)

With the numerical values given in the equivalent circuit, make clear sketches of S11, S22, S12, and S21, from DC to infinite frequency, on the Smith chart below. This may require that you calculate the S parameters first.

Problem 2, 15 points
Two-port properties
part a, 5 points

$\mathrm{Y} 11=$ \qquad
$\mathrm{Y} 21=$ \qquad
$\mathrm{Y} 12=$
$\mathrm{Y} 22=$
\qquad
part b, 10 points
Properties of S-parameters
The network at the right is for a DC bias feed.
If we want $\|\mathrm{S} 21\|>-3 \mathrm{~dB}$ at 1 GHz , what is the
minimum value of the inductor?
If we want $\|\mathrm{S} 11\|<-40 \mathrm{~dB}$ at 1 GHz , what is the
minimum value of the inductor?
Assume a 50 Ohm impedance standard.

Minimum value of L to meet S 21 specification= \qquad
Minimum value of L to meet S 11 specification= \qquad

Problem 3, 20 points (145A), 30 points (218A)
2-port parameters and signal flow graphs

Part a, 5 points
The signal flow graph to the right
represents the cascade of two-ports "x" and
"y". If we call the combined network "z",
find $S_{21}^{Z}, S_{12}^{Z}, S_{21}^{Z} / S_{12}^{Z}$ and S_{11}^{Z}
$S_{21}^{Z}=$ \qquad , $S_{12}^{Z}=$ \qquad
$S_{21}^{Z} / S_{12}^{Z}=$ \qquad , $S_{11}^{Z}=$
part b, 10 points (218A only)

Prove that $S_{21} / S_{12}=Y_{21} / Y_{12}$. This involves nodal analysis of the above circuit.
part c, 5 points (BOTH 218A and 145A)

Given that $S_{21} / S_{12}=Y_{21} / Y_{12}$, for the circuit to the right, find Y_{21} / Y_{12}. After finding an exact answer, assume that $g_{m} \gg \omega C_{g s}$ to find a simpler answer applicable at lower frequencies.	

$Y_{21} / Y_{12}=$ \qquad
$Y_{21} / Y_{12} \cong$ \qquad

part d, 10 points

The network (A), which represents the hybrid-pi FET model in source-follower operation, can be represented as the cascaded network (B) below.
If we assume that the network is potentially unstable (it will be at lower frequencies), find an expression for the maximum stable gain. This derivation shows why source followers have difficulties with stability.

MSG= \qquad

Problem 4, 25 points
gain definitions

part a, 5 points
The device is connected to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedance-matching network to a 50 Ohm load. Find the power in the load.
$P_{\text {Load }}=$ \qquad
part b, 5 points
The device is directly connected to a 50 Ohm generator with 1 microwatt available power, and is directly connected to a 50 Ohm load. Find the RF power in the load.
$P_{\text {Load }}=$
part c, 5 points

The device is connected via a conjugate impedance-matching network to a 50 Ohm generator with 1 microwatt available power, and is connected via a conjugate impedancematching network to a 50 Ohm load. Find the power in the load. Find the source and load impedances presented to the transistor.
\qquad
$P_{\text {Load }}=$
$Z_{\text {source }}$
$Z_{\text {Load }}=$

part d, 10 points

Using the impedance-matching networks of part C (they are NOT CHANGED for part d), the device is now connected to a 100 Ohm generator with 1 microwatt available power, and is directly connected to a 25 Ohm load. Find the RF power in the load.
$P_{\text {Load }}=$

Problem 5, 15 points (145A), 25 points (218A)
Potentially unstable amplifier design
part a, 7 points
At a design frequency of 10 GHz , a common-source FET has source and load stability circles as below

Given that S11=0.5 and S22=0.9 at 10 GHz , draw two stabilization circuits in the boxes below, giving element values

Solution 1	Solution 2

part b, 5 points
A FET has available and operating gain circles as below at 1 GHz .

Assuming a 50Ohm impedance normalization, what are the optimum generator and load impedances?

$$
Z_{\text {gen }, \text { opt }}=\square \quad Z_{l, \text { opt }}=
$$

part c, 10 points (218 A only)

| At 10 GHz, a transistor has
 $\mathrm{S} 11=0, \mathrm{~S} 12=0.1$, | | |
| :--- | :--- | :--- | :--- |
| $\mathrm{S} 21=20, \mathrm{~S} 22=-0.5$. | | |
| These S-parameters are normalized to a 50 | | |
| Ohm reference impedance | | |

Draw the *source* stability circle on the graph below:
(to do this perfectly, you would need a compass: you can sketch most of the curve, but be sure to plot *exactly* the points where the stability circle crosses the real axis, i.e. the xaxis.)

