ECE ECE145A (undergrad) and ECE218A (graduate)

Mid-Term Exam. November 8, 2022
Do not open exam until instructed to.
Open notes, open books, etc.
You have 1 hour and 15 minutes.

Use any and all reasonable approximations (5\% accuracy is fine.) , AFTER STATING THEM.

Problem	Points Received	Points Possible
1		15
2a		10
2b		7
2c		8
2d (218 only)		10 (218A only)
3a		5
3b		5
3c		7.5
3d		7.5
4		15
5 a	10	
$\mathbf{5 b}$ (218 only)		$15(218 \mathrm{~A}$ only $)$
6		10
total		100 (145), 125 (218A)

Name: Solution

Problem 1, 15 points

The Smith Chart and Frequency-Dependent Impedances.
HINT: use the scales on the figures to measure distances as needed.

First match each Smith Chart with each circuit. Then determine as many component values as is possible (RLC values, transmission line delays and characteristic impedances)...note that some values cannot be determined with the information given. The charts all use 50 Ohm normalization:
 \qquad , \qquad ,

Smith chart (b). Circuit= \qquad 2°
Component values: $n=50$ S \qquad , \qquad ,

Smith chart (c). Circuit= \qquad K
Component values: $R=4502$ \qquad $\Psi=250 p 5$, \qquad $\operatorname{zin} \varepsilon=$ $5 \operatorname{sen} \cdot \sqrt{3}$
Smith chart (d). Circuit-
Component values:
$R_{1} \div 2250$,
$R_{2}=450 \Omega$,
\qquad ,

a) Spots

b) sEpts

$$
\begin{aligned}
(Z) \rightarrow Z_{0} /_{\text {ine }} & =\sqrt{z_{\cdot i} Z_{L}}=\sqrt{\frac{5 \pi}{3} \cdot 9 \cdot 50 R} \\
& =50 \Omega \cdot \sqrt{3}
\end{aligned}
$$

1

$$
\left[\begin{array}{l}
\text { lini is }-1 / 4 \in 1 \text { Gttz } \\
\text { lins is } 1 \text { © } 4 \text { GH/s } \rightarrow \gamma=250 p s
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (d) } \\
& 1.5\left[\begin{array}{l}
R_{z}=450 \Omega \\
R_{1} / I R_{2}=150 \Omega
\end{array}\right. \\
& {\left[\begin{array}{l}
\Gamma=0.5 \\
\rightarrow \xi=\frac{1+5}{1-\Gamma}=\frac{1.5}{0.5}=3 \\
\square \sim-0.8
\end{array}\right.} \\
& \xi=\frac{1+5}{1-x^{7}}=\frac{1.8}{0.2}=9 \rightarrow 450 \mathrm{R} . \\
& \text { (e) } \\
& 1\left[\begin{array}{l}
\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{R_{1}}+\frac{1}{4500}=\frac{1}{150 R} \\
\frac{1}{n_{1}}=\frac{1}{150 \Omega}-\frac{1}{4500} \rightarrow R_{1}=225 \Omega
\end{array}\right.
\end{aligned}
$$

Problem 2, 25 points (ece145A), 35 points (ece218A)
2-port parameters and Transistor models

Part a, 10 points
At the right is the equivalent circuit for a FET. The transconductance gm is 1 mS .

Now, given this model, for the network at the right, give the numerical values of S21 and S 11 . The reference Zo is 50 Ohms . .

$$
\begin{aligned}
& 2\left[z_{1 i}=1 / 9 \mathrm{~m}=10000\right. \text { so } \\
& 2\left[S_{11}=\frac{1000150-1}{1000150+1}=\frac{20-1}{20+1}=19 / 21=S_{11}\right. \\
& {\left[\begin{array}{l}
V_{1}=\operatorname{Vgen} \cdot \frac{1 / q_{2}}{1 s_{4}+z_{0}} \\
V_{2}=g_{m} z_{0} \cdot V_{1}
\end{array}\right\} \frac{V_{2}}{\sqrt[V]{g_{2}}}=\frac{z_{0}}{1 / g_{1}+z_{0}}} \\
& 2 \quad \begin{aligned}
S_{21}=\frac{2 V_{0}}{\sqrt{y}} /_{z_{y}}=z_{2}-z_{0} & =\frac{2 Z_{0}}{1 / 9 n+z_{0}} \\
& =\frac{100 \Omega}{1000 n+500}
\end{aligned} \\
& S_{4}=\frac{100}{1050}
\end{aligned}
$$

Part b, 7 points
Derive algebaic expressions for the four Y parameters for this network

1.75 pts ouch

Part d, ECE218A students only 10 points Compute the Y parameters for network, to second order in $j \omega C_{g d} R_{i}$. The Taylor series expansion $(1+\varepsilon)^{-1}=1-\varepsilon+\varepsilon^{2}+O\left(\varepsilon^{3}\right)$ may be useful
2

IT $=\left(V_{1}-V_{x}\right) G$ wee $G=\left(R_{i}\right.$
$P I_{1}=V_{1}-V_{1}\left(1-\alpha+\alpha^{2}\right)-V_{2}\left(\alpha-\alpha^{2}\right)$

$$
=V_{1}\left(\alpha-\alpha^{2}\right)-V_{2}\left(\alpha-\alpha^{2}\right)
$$

2

$$
\begin{aligned}
I_{1}= & V_{1} \cdot \frac{1}{R}\left(j \omega R C+\omega^{2} R^{2} C^{2}\right) \\
& -V_{2} \frac{1}{n}\left(j \omega n C+\omega^{2} n^{2} C^{2}\right) \\
= & V_{1}\left[i \omega C+\omega^{2} P C^{2} y_{11}\right. \\
& +V_{2}\left[-j \omega C-\omega^{2} R C^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =g_{n} V_{x}+\left(V_{2}-V_{x}\right) j \omega c \\
& =j \omega c V_{2}+\left(g_{n}-j \omega c\right) V_{x}
\end{aligned}
$$

$I_{2}-j \omega \subset v_{2}=\left(g_{n}-j \omega c\right)$.

$$
\left(v_{1}\left(1-\alpha+\alpha^{2}\right)+v_{2}\left(\alpha-\alpha^{2}\right)\right)
$$

$I_{2}=V_{1} g_{n}\left(1-j \omega c / q_{m}\right) \cdot\left(1-j \omega n c+\omega^{2} n^{2} c^{2}\right)$

$$
\begin{aligned}
& =V_{1} g_{n}(1-j \omega c \operatorname{lq} m) \cdot\left(1-j \omega c+\eta_{2}\right. \\
& +V_{i}\left[j \omega c+\left(g_{m}-j \omega c\right)\left(j \omega k c+\omega^{2} n^{2} c^{2}\right)\right]
\end{aligned}
$$

$$
=v g_{h}(1-j \omega c \operatorname{lq}) \cdot\left(1-j \omega n c+\omega^{2} n^{2} c^{2}\right)
$$

$$
\begin{aligned}
&= V_{1} g_{n}\left(1-j \omega c / q_{m}\right) \cdot\left(1-j \omega n c+\omega-R^{2} c^{2}\right) \\
& V_{2}\left[j \omega c+j \omega n c g_{m}+\omega^{2} n^{2} c^{2} g_{n}+\omega^{2} c^{2} R^{\prime}\right] \\
& l_{22}
\end{aligned}
$$

thote I have
dropped $j \omega c\left(\omega^{2} n^{2} c^{2}\right)$
tirn, as this is 3'dorder

Problem 3, 25 points (ECE145A), 25 points (ECE 218A)
Available source power relationships, lumped/distributed relationships.

Part a, 5 points
Vs is 2 V RMS at 10 GHz . R1 and R2 are both 50 Ohms, L is 0.795 nH .

At 10 GHz , what is the available signal power? Draw the circuit diagram of a load network, with element values specified, that would, when connected to the source, absorb this amount of power from the
 generator.

Part b, 5 points
A coaxial cable has 50 Ohms characteristic impedance, is 10 meters long, and the insulating dielectric has a dielectric constant of 2.0 .

a) What is the total capacitance of the cable ?
b) What is the total inductance of the cable ?

Part c, 7.5 points
A capacitor has round plates of radius $\mathrm{R}=1$ cm , and separation $\mathrm{H}=0.1 \mathrm{~mm}$. Between the plates is an insulator whose dielectric constant is 100 .
a) What is the capacitor's impedance at 1 kHz ?
b) At what frequencies is the impedance infinity Ohms ?
c) At what frequencies is the impedance zero Ohms?

$$
\operatorname{Arca}=A=\pi R^{2}
$$

B)

$$
\text { shad of light delay, eator-edye }=
$$

$$
0.3\left[\tau=\frac{1 \mathrm{~cm}}{3.108 \mathrm{mls}} \cdot \sqrt{100}=\frac{1}{3} n s=\frac{1}{36 / 6}\right.
$$

$$
\begin{aligned}
& \text { C) }[z \rightarrow 0 \text { the } \lambda / 4,3 \mathrm{Na}, \ldots . \\
& 2^{5} \rightarrow \frac{3}{4} 616,3, \frac{3}{4} \operatorname{Gd}, 5, \frac{3}{4} \mathrm{Cl} .
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
v=R=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
z_{0}=377 \Omega \cdot \frac{1 \mathrm{~mm}}{}=\frac{377}{6} \Omega \\
c=10 \mathrm{~cm} 1 \mathrm{~mm}+5 \mathrm{mn} \\
T=\frac{10 \mathrm{ch}}{3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}=\frac{10^{-2 \mathrm{~m}}}{3 \cdot 10^{8 \mathrm{n} / \mathrm{s}}}=\frac{1}{3} \cdot 10^{-10} \mathrm{sec}
\end{array}\right.} \\
& \text { Using the approximate formula for } \\
& \text { transmission-line characteristic impedance, } \\
& Z_{0} \simeq{ }_{\mathrm{V}^{c_{r}}}^{\text {~~~~ }} \frac{H}{H+W} \text {, if } \mathrm{H}=1 \mathrm{~mm}, \mathrm{~W}=5 \\
& \mathrm{~mm} \text {, and } \mathrm{L}=10 \mathrm{~cm} \text {, we have two metal } \\
& \text { plates that are short-circuited at a distance } \\
& \mathrm{L} \text { from the drive point. } \\
& \text { a) what is the approximate inductance } \\
& \text { between the two ends of the wire ? } \\
& \text { b) At what frequencies is the impedance } \\
& \text { infinity Ohms? } \\
& \text { c) At what frequencies is the impedance } \\
& \text { zero Ohms? } \\
& \text { a) }\left[L=Z_{0} \cdot 4=\frac{3778}{6} \cdot \frac{1}{3} \cdot 10^{-10} \sec =\frac{377}{18} \cdot 10^{-10} \mathrm{M}\right. \\
& =\frac{377}{180} \mathrm{nH}=2.09 \mathrm{nH} \\
& 1\left[\text { InT }=\frac{10^{10}}{3} \mathrm{~Hz}=\frac{10}{3}\right. \text { ito. } \\
& \text { (c) } Z \rightarrow 0 \text { ween } L=C \cdot \frac{\lambda}{2}, 2 \cdot \frac{\lambda}{2}, 3 \cdot \frac{\lambda}{2}, \ldots n \cdot \frac{\lambda}{2} \\
& f=d c, \frac{5}{3} G H_{2}, 2 \cdot \frac{5}{3} G t_{2}, 3 \cdot \frac{5}{3} 6 H_{2}, \ldots \\
& \text {) } Z \rightarrow \infty \text { when } C=1 \cdot \frac{\lambda}{4}, 3 \cdot \frac{\lambda}{4}, 5 \cdot \frac{\lambda}{4}, \ldots \text {. } \\
& f=\frac{5}{6} 6 \mathrm{k}, 3 \cdot \frac{5}{6} \mathrm{GH}, 5 \cdot \frac{5}{6} 6 \mathrm{H} \ldots
\end{aligned}
$$

Problem 4, 15 points

Impedance-matching exercise.
At 10 GHz signal frequency, an antenna has an input impedance of $100+\mathrm{j} 0$ Ohms. Design a matching network, using a series inductor and a shunt capacitor, which matches this impedance to 25 Ohms. Use a Smith chart with 50 Ohms impedance normalization

Give all element values. Either use a separate impedance-admittance chart, or use the attached one below..

so Ω chert

$$
\begin{aligned}
& 2[A) \xi=2 j^{j} ; y=1 / 2+j 0 \\
& 2\lceil\text { b) y }-1 / 2+j 0.9 \\
& 4\left[\begin{array}{l}
\Delta y=j 0.9 \\
\Delta Y=\frac{j 0.9}{50 R}=j \omega C \\
C=\frac{0.9}{502 \cdot 2 \pi \cdot 106 \frac{8}{8}}=2.86 \mathrm{pF}
\end{array}\right. \\
& 2[b] \xi=0.5-j 0.9 \\
& 2[c) \xi=0.5+j 0 \quad \Delta \xi=j 0.9 \\
& 3\left[\Delta Z=j 0.9 \cdot 50 \Omega=j \omega<\rightarrow<=\frac{0.9 \cdot 50 \Omega}{2 \pi(106 / g)}\right. \\
& =0.72 \mathrm{nH} .
\end{aligned}
$$

Problem 5, 10 points (ece145A), 25 points (218A)
Signal flow graphs
Part a, 10 points
Find $b_{\text {out }} / a_{\text {gen }}$ for this network.

Part b, (218A only) 15 points
Find $b_{o u t} / a_{\text {gen }}$ for this network.

$$
=\left[\begin{array}{ll}
T_{s} & =1 / 2
\end{array} \quad \begin{array}{l}
C_{s}=0 \\
E_{c}=-1
\end{array}\right.
$$

Problem 6, 10 points

Transmission lines in the time domain.
Ven is a 1 V step-function occurring at $\mathrm{t}=0$
seconds. Cline is 50 Ohms . The line is 2
meters long and has a diectric constant of 4.0.

R 2 is zero Ohms
R 1 is 50 Ohms .

Plot Yin (t) on the graph below.

$$
2\left[\begin{array}{l}
v=\frac{{ }^{3} 10^{8} \mathrm{~m} / 5}{2} \\
\psi=\frac{2 m}{v}=\frac{2 m}{1.5 \cdot 10^{6} n / 5}=\frac{4}{3} \cdot 10^{-8} \mathrm{sc} \\
=13.3 \mathrm{~ns}
\end{array}\right.
$$

2

