ECE ECE145A (undergrad) and ECE218A (graduate)

TAKE HOME Final Exam. Return before Friday December 15, 2017

HONOR SYSTEM: Open book. You have 3 hrs. WORK WITHOUT HELP.
Use all reasonable approximations (5% accuracy is fine.) ,
AFTER STATING and justifying THEM.
Think before doing complex calculations. Sometimes there is an easier way.

Problem	Points Received	Points Possible
1A		5
1B		5
1C		5
1D		10
1E		10
1F		10 (218A only)
2A		10
2B	5	
2C		5
2D		5
3A		10
3B		10
4A	5	
4B		10
4C	10 (218A only)	
total	95 (145A), 115 (218A)	

I certify that

1) I have taken no more that 3 hours to work the exam. (or DSP) limits.
2) I have help from no one
3) I did not read the exam until the time I took the exam.

Signed: \qquad
$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}}$ $G_{P}=\frac{1}{1-\left\|\Gamma_{i n}\right\|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left\|\Gamma_{\text {out }}\right\|^{2}} \quad G_{\max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$. if $K<1 \quad K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$
Unconditionally stable if : (1) $\mathrm{K}>1$ and (2) $\|\operatorname{det}[S]\|<1$

Problem 1, 35 points (145A), 45 points (218A)
Two-port properties, Power gain definitions

| At a signal frequency of 10 GHz, a |
| :--- | :--- | :--- |
| transistor has $S_{11}=0, S_{12}=0.2, S_{21}=2$ and |
| $S_{22}=0.8$, as defined with a 50 Ohm |
| impedance reference. |

part a, 5 points
Is the circuit unconditionally stable? Hint: examine the expressions for $\Gamma_{i n}$ and $\Gamma_{\text {out }}$ Yes/No: ?
part b, 5 points
Please draw a SOURCE stability circle

part c, 5 points
The transistor is connected to a 100 Ohm generator with 1 mW available power. The output of the transistor is impedance matched to the load. How much power will be delivered to the load?
load power =

part d, 10 points

IF necessary, the transistor is stabilized, and is then impedance-matched to a 50 Ohm generator and a 50 Ohm load? If the generator has 1 mW available power, how much power will be delivered to the load?
load power $=$
part e, 10points

In the case of part D, above, if we consider the transistor, the possible stabilization network, and the matching networks to be, in combination, an amplifier, what are \|S21\|, $\|\mathrm{S} 11\|,\|\mathrm{S} 22\|,\|\mathrm{S} 12\|$ of the amplifier ?
||S11|| = \qquad
||S12|| = \qquad
||S21|| = \qquad
||S22|| $=$ \qquad
part f, 10 points (somewhat tricky, ece218c students only)

I now connect the amplifier of parts D and E to a 100 Ohm generator of 1 mW available power. The load is 25 Ohms. What is the power delivered to the load ?

Pload= \qquad

Problem 2, 25 points
Unconditionally stable and Potentially unstable amplifier design, gain circles
part a, 10 points
A MOSFET in common-source mode has $\|$ S11 $\|<1$ and \mid S22 $\|>1$, and has stability circles (50Ohm reference impedance) as below.
In the boxes below, draw circuit diagrams of *two* methods of stabilizing the transistor.

part b, 5 points

A transistor has available and operating gain circles as below. These are graphed in 1dB gain increments. The transistor MAG is 10 dB , and the transistor is unconditionally stable. (the stability circles have been updated)

What source and load impedances are required for 10 dB gain?
$\mathrm{Zs}=$ \qquad $\mathrm{Zl}=$ \qquad
part c, 5 points
We continue with the transistor of part \mathbf{B}. If the generator impedance is 50 Ohms , and the load impedance is matched to the transistor output impedance, then what power gain will the transistor have?
Power gain $=$
part d, 5 points
We continue with the transistor of part B. If the load impedance is 500 hms , and the generator impedance is matched to the transistor input impedance, then what power gain will the transistor have?
Power gain $=$

Problem 3, 20 points

S parameters and Signal flow graphs
part a, 10 points
We have R1=100 Ohms and R2=50
Ohms
Given a 50 Ohm impedance reference, Find the four S-parameters of this network

S11= \qquad S12= \qquad S21= \qquad , $\mathrm{S} 22=$ \qquad
part b, 10 points
We have a transistor having $\mathrm{S} 11=0.5, \mathrm{~S} 12=0.1, \mathrm{~S} 21=3, \mathrm{~S} 22=0.5$. We connect the network of part a to the transistor's INPUT. Please find S21 of the combined network

S 21 of the combined network $=$

Problem 4, 15 points (145A), 25 points (218A)
Power amplifier design (the graph is updated)

A FET has the common-source characteristics above, normalize to FET gate width. You can infer gm from the data above. We have $\mathrm{Ri}=1 / \mathrm{gm}$, and f_{τ} is 200 GHz . The signal frequency is 50 GHz
part a, 5 points
Assuming TEMPORARILY a 1 micron FET width, give the following.
$\mathrm{gm}=$ \qquad , $\mathrm{Cgs}=$ $R i=$ \qquad

part b, 10 points

When we attempt to design impedance-transformation networks, we have found that the minimum load impedance we can synthesize is 10 Ohms .
What FET width should we select ? $\mathrm{Wg}=$
What maximum undistorted output power will we obtain? Pout= What input power does this require ? Pin=
part c, 10 points

218A students ONLY

We want to combine the power of 4 such FETs. Draw circuit diagrams, with all element values given, of (1) the output matching network of an individual FET and (2) the output power-combining network.

