ECE ECE145A (undergrad) and ECE218A (graduate) Final Exam. Monday December 5, 2021, noon - 3 p.m.

Open book. You have 3 hrs.

Use all reasonable approximations (5% accuracy is fine.), *AFTER STATING and justifying THEM.* <u>Think before doing complex calculations.</u> Sometimes there is an easier way.

Problem	Points Received	Points Possible
1A		5
1B		5
1C		5
1D		5
1D		5
1F		10
1G		10 (218A only)
2		10
3		10
4A		10
4B		10 (218A only)
5A		5
5B		10 (218A only)
total		70 (145A), 100 (218A)

$$\begin{split} G_{T} &= \frac{|S_{21}|^{2} (1 - |\Gamma_{s}|^{2})(1 - |\Gamma_{L}|^{2})}{|(1 - \Gamma_{s}S_{11})(1 - \Gamma_{L}S_{22}) - S_{21}S_{12}\Gamma_{s}\Gamma_{L}|^{2}} \qquad G_{P} = \frac{1}{1 - ||\Gamma_{in}||^{2}} \cdot |S_{21}|^{2} \cdot \frac{1 - |\Gamma_{L}|^{2}}{|1 - \Gamma_{L}S_{22}|^{2}} \\ G_{a} &= \frac{1 - |\Gamma_{s}|^{2}}{|1 - \Gamma_{s}S_{11}|^{2}} \cdot |S_{21}|^{2} \cdot \frac{1}{1 - ||\Gamma_{out}||^{2}} \qquad G_{max} = \frac{|S_{21}|}{|S_{12}|} \cdot \left[K - \sqrt{K^{2} - 1}\right] \text{if } K > 1 \\ G_{MS} &= \frac{|S_{21}|}{|S_{12}|} \cdot \text{if } K < 1 \qquad K = \frac{1 - |S_{11}|^{2} - |S_{22}|^{2} + |\Delta|^{2}}{2|S_{21}S_{12}|} \qquad \text{where } \Delta = \det[S] \\ \text{Unconditionally stable if : (1) K > 1 and (2) ||det[S]|| < 1 \end{split}$$

Problem 1, 30 points (145A), 40 points (218A)

Power Gain Definitions

If we directly connect the generator to the transistor input, but impedance-match the load to the transistor output, what RF power will be delivered to the load ?

RF power delivered to the load =_____

part b, 5 points

* *		
At 100 GHz, the transistor has		
S11=-1/2, $S21=-4$, $S12=0$, $S22=+1/3$,		
(S-parameters using 50Ω normalization)		
The generator has 50 Ohms source		
impedance and 1 mW available power. The		
load is 50 Ohms.		
If we directly connect the generator and load to the transistor, what RF power will be		

If we directly connect the generator and load to the transistor, what RF power will be delivered to the load ?

RF power delivered to the load =_____

part c, 5 points

At 100 GHz, the transistor has S11= $-1/2$, S21= -4 , S12= 0 , S22= $+1/3$, (S-parameters using 50 Ω normalization)		
The generator has (250/3) Ohms source	♥	
impedance and 1 mW available power. The		
load is (50/3) Ohms.		
If we impedance-match the generator to the transistor input but directly connect the load		

If we impedance-match the generator to the transistor input, but directly connect the load to the transistor output, what RF power will be delivered to the load ?

RF power delivered to the load =_____

part d, 5 points

If we place impedance-matching networks between the generator and the transistor, and between the transistor and the load, what RF power will be deliver to the load ? RF power delivered to the load =

part e, 5 points

At 100 GHz, the transistor has S11=-1/2, S21=-4, S12=0, S22=+1/3, (S-parameters using 50 Ω normalization)

The generator has (250/3) Ohms source impedance and 1 mW available power. The load is (50/3) Ohms.

If we directly connect the generator and load to the transistor, what RF power will be delivered to the load ?

RF power delivered to the load =

part f, 10 points

Please find the following:

Input impedance of the transistor $Z_{in,T} =$

Source impedance presented to the transistor $Z_{S,T} =$

Output impedance of the transistor $Z_{out,T} =$

Load impedance presented to the transistor $Z_{L,T} =$

part g, 10 points (218A only)

At 100 GHz, the transistor has S11=0, S21=4, S12=1/8, S22=1/3; \leftarrow note the changes ! (S-parameters using 50 Ω normalization)

The generator has $R_{gen} = 50$ Ohms source impedance. The load is $R_L = 50$ Ohms.

We are desinging a *power amplifier*. We have independently determined from V_{max} , V_{min} , I_{max} , etc., that the optimum large-signal transistor load impedance is $Z_{L,T}=200$ Ω and that the maximum output power, at clipping, is 100 mW. We impedance-match on the input.

Please find the following:

Available generator power at which the amplifier reaches clipping =_____

This will required some hard thinking

Problem 2, 10 points

Stabilization

Problem 3, 10 points

Gain circles

A FET in common-source mode has operating and available gain circles as shown (50 Ohm impedance normalization). Find the optimum generator and load impedances (in complex Ohms).

optimum source impedance=_____

optimum load impedance=_____

Problem 4, 10 points (145A), 20 points (218A)

2-port parameters and signal flow graphs

Part b, 10 points (218a only)

Compute S_{21}^{B} (hint: first draw a signal flow graph)

Problem 5, 5 points (145A), 15 point (218A)

Power amplifier design

part a, 5 points

Teledyne's 250nm node InP HBT (heterojunction bipolar transistor) technology has a maximum safe current of 1 mA per micrometer of emitter finger lenght. For wide bandwidth (high fmax), the maximum emitter finger length is 5.0 micrometers; set the emitter length at this value, but use multiple emitter to further increase maximum output current to some desired value. The maximum safe collector-emitter voltage is 4.5 V, and the minimum (knee) voltage is 0.5 Volts.

What is the maximum RF power per 1 micron of emitter finger length ? Power (1 micron)=_____

We seek to design a multi-finger HBT cell layout that interfaces to 50 Ohms, with some parallel inductance to tune out the HBT output capacitance.

How many 5 micrometer length emitter fingers would that cell use ?

What is the maximum output power of that cell?

What would be the collector efficiency ?

Given the 50 Ohm load, the 5 micron emitter length, and the number of emitter fingers you have found earlier, what input power is necessary to produce this maximum output power?