ECE ECE145A (undergrad) and ECE218A (graduate)
 Final Exam. Monday December 5, 2021, noon-3 p.m.

Open book. You have 3 hrs .
Use all reasonable approximations (5% accuracy is fine.) ,
AFTER STATING and justifying THEM.
Think before doing complex calculations. Sometimes there is an easier way.

Problem	Points Received	Points Possible
1A		5
1B		5
1C		5
1D		5
1D		5
1F		10
1G		10 (218A only $)$
2		10
3		10
4A		10
4B		10 (218A only)
5A		5
5B		10 (218A only)
total	70 (145A), 100 (218A)	

$G_{T}=\frac{\left|S_{21}\right|^{2}\left(1-\left|\Gamma_{s}\right|^{2}\right)\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1-\Gamma_{s} S_{11}\right)\left(1-\Gamma_{L} S_{22}\right)-S_{21} S_{12} \Gamma_{s} \Gamma_{L}\right|^{2}} \quad G_{P}=\frac{1}{1-\left\|\Gamma_{i n}\right\|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-\Gamma_{L} S_{22}\right|^{2}}$
$G_{a}=\frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} S_{11}\right|^{2}} \cdot\left|S_{21}\right|^{2} \cdot \frac{1}{1-\left\|\Gamma_{\text {out }}\right\|^{2}} \quad G_{\max }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \cdot\left[K-\sqrt{K^{2}-1}\right]$ if $K>1$
$G_{M S}=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}$. if $K<1 \quad K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2\left|S_{21} S_{12}\right|} \quad$ where $\Delta=\operatorname{det}[S]$
Unconditionally stable if : (1) $\mathrm{K}>1$ and (2) $\|\operatorname{det}[S]\|<1$

Problem 1, 30 points (145A), 40 points (218A)
Power Gain Definitions
part a, 5 points
At 100 GHz , the transistor has
S11 $=-1 / 2, S 21=-4, S 12=0, S 22=+1 / 3$, (S-parameters using 50Ω normalization)

The generator has (250/3) Ohms source
 impedance and 1 mW available power. The load is $(50 / 3)$ Ohms.
If we directly connect the generator to the transistor input, but impedance-match the load to the transistor output, what RF power will be delivered to the load ?

RF power delivered to the load $=$ \qquad
part b, 5 points
At 100 GHz , the transistor has
$S 11=-1 / 2, S 21=-4, S 12=0, S 22=+1 / 3$,
(S-parameters using 50Ω normalization)
The generator has 50 Ohms source

impedance and 1 mW available power. The load is 50 Ohms.
If we directly connect the generator and load to the transistor, what RF power will be delivered to the load?

RF power delivered to the load $=$ \qquad
part c, 5 points
At 100 GHz , the transistor has
$S 11=-1 / 2, S 21=-4, S 12=0, S 22=+1 / 3$,
(S-parameters using 50Ω normalization)
The generator has (250/3) Ohms source

If we impedance-match the generator to the transistor input, but directly connect the load to the transistor output, what RF power will be delivered to the load ?

RF power delivered to the load $=$ \qquad
part d, 5 points
At 100 GHz , the transistor has
$\mathrm{S} 11=-1 / 2, \mathrm{~S} 21=-4, \mathrm{~S} 12=0, \mathrm{~S} 22=+1 / 3$,
(S-parameters using 50Ω normalization)
The generator has (250/3) Ohms source

If we place impedance-matching networks between the generator and the transistor, and between the transistor and the load, what RF power will be deliver to the load? RF power delivered to the load $=$
part e, 5 points
At 100 GHz , the transistor has
$\mathrm{S} 11=-1 / 2, \mathrm{~S} 21=-4, \mathrm{~S} 12=0, \mathrm{~S} 22=+1 / 3$,
(S-parameters using 50Ω normalization)
The generator has $(250 / 3)$ Ohms source
impedance and 1 mW available power. The
load is $(50 / 3)$ Ohms.

If we directly connect the generator and load to the transistor, what RF power will be delivered to the load?

RF power delivered to the load $=$ \qquad
part f, 10 points
At 100 GHz , the transistor has
S11 $=(1 / 2+j / 2) \leftarrow$ note the change !
$\mathrm{S} 21=-4, \mathrm{~S} 12=0, \mathrm{~S} 22=+1 / 3$, (S-
parameters using 50Ω normalization)
The generator has 50 Ohms source impedance and 1 mW available power. The load is 50 Ohms.

We impedance-match the generator to the transistor input and impedance-match the load to the transistor output .

Please find the following:
Input impedance of the transistor $Z_{i n, T}=$ \qquad

Source impedance presented to the transistor $Z_{S, T}=$ \qquad

Output impedance of the transistor $Z_{\text {out }, T}=$ \qquad

Load impedance presented to the transistor $Z_{L, T}=$ \qquad
part g, 10 points (218A only)

We are desinging a *power amplifier*. We have independently determined from $V_{\max }$, $V_{\min }, I_{\max }$, etc., that the optimum large-signal transistor load impedance is $Z_{L, T}=200$ Ω and that the maximum output power, at clipping, is 100 mW . We impedance-match on the input.

Please find the following:
Available generator power at which the amplifier reaches clipping $=$ \qquad
This will required some hard thinking

Problem 2, 10 points

Stabilization

A MOSFET in common-source mode has $\left\|S_{11}\right\|<1$ and $\left\|S_{22}\right\|<1$. Source and load stability circles are as shown. The Smith charts use 50 Ohms impedance normalization. Draw $* * 2 * * *$ circuit diagrams, giving resistor values, of methods of stabilizing the transistor. Please draw your answers in the 2 boxes below
circuit \#1
circuit \#2

Problem 3, 10 points

Gain circles
Available gain circles ($\Gamma_{\mathrm{s} \text { plane) }}$ Operating gain circles ($\Gamma_{\mathrm{L} \text { plane) }}$

A FET in common-source mode has operating and available gain circles as shown (50 Ohm impedance normalization). Find the optimum generator and load impedances (in complex Ohms).
optimum source impedance= \qquad optimum load impedance= \qquad

Problem 4, 10 points (145A), 20 points (218A)

2-port parameters and signal flow graphs

Part a, 10 points
Amplifiers A and B have S-parameters
$S_{i j}^{A}=\left[\begin{array}{cc}0 & 0 \\ 2 & 1 / 2\end{array}\right]$ and $S_{i j}^{B}=\left[\begin{array}{cc}1 / 2 & 0 \\ 2 & 0\end{array}\right]$.
(S-parameters using 50Ω normalization).
$Z_{\text {o,line }}=50 \Omega, l_{\text {line }} / v_{\text {line }}=\tau_{\text {line }}=1 \mathrm{nS}$.
Compute S_{21}^{C} as a function of frequency. (hint: first draw a signal flow graph)

Part b, 10 points (218a only)

Amplifiers A has S-parameters
$S_{i j}^{A}=\left[\begin{array}{ll}0 & 1 / 4 \\ 2 & 1 / 2\end{array}\right]$.
(S-parameters using 50Ω normalization). Resistors $R_{\text {in }}=50 \Omega$ and $R_{\text {out }}=50 \Omega$ are added in parallel to the input and in series to the output.

Compute S_{21}^{B} (hint: first draw a signal flow graph)

Problem 5, 5 points (145A), 15 point (218A)

Power amplifier design
part a, 5 points
Teledyne's 250 nm node InP HBT (heterojunction bipolar transistor) technology has a maximum safe current of 1 mA per micrometer of emitter finger lenght. For wide bandwidth (high fmax), the maximum emitter finger length is 5.0 micrometers; set the emitter length at this value, but use multiple emitter to further increase maximum output current to some desired value. The maximum safe collector-emitter voltage is 4.5 V , and the minimum (knee) voltage is 0.5 Volts.

What is the maximum RF power per 1 micron of emitter finger length?
Power (1 micron) $=$ \qquad

We seek to design a multi-finger HBT cell layout that interfaces to 50 Ohms, with some parallel inductance to tune out the HBT output capacitance.

How many 5 micrometer length emitter fingers would that cell use ? \qquad
What is the maximum output power of that cell? \qquad
What would be the collector efficiency? \qquad
part b, 10 points (218A only)

Given the 50 Ohm load, the 5 micron emitter length, and the number of emitter fingers you have found earlier, what input power is necessary to produce this maximum output power?

