ECE 145a /218A first problem set (basics of transmission lines and lumped elements)

Problem 1: A transmission line has 50
Ohms characteristic impedance and a load impedance of (a) 25 Ohms (b) 100 Ohms (c) 50 Ohms. Compute in each case the voltage reflection coefficient.

Problem 2: : lattice diagrams:
(a) A logic gate with low (zero ohms) output impedance drives a 50 Ohm transmission line of 1 m length and $2 * 10^{8} \mathrm{~m} / \mathrm{s}$ propagation velocity. The equivalent circuit is in the lower image. The load impedance is 50 Ohms and Vgen is a 1 V step-function occurring at time $=$ zero..

Draw clean plots of Vin, Vmid, and Vout as a function of time
(b) a logic gate with 50 Ohms output impedance drives a 50 Ohm transmission line of 1 m length and $2 * 10^{8} \mathrm{~m} / \mathrm{s}$ propagation velocity. The equivalent circuit is in the lower image. The load impedance is infinity Ohms (an open circuit) and Vgen is a 1 V step-
 function occurring at time $=$ zero..

Draw clean plots of Vin, Vmid, and
Vout as a function of time
c) Comment of on the relative utility of the 2 schemes for distributing logic signals using a transmission-line bus

Problem 3:
lumped-distributed relationships
$Z_{o}=50 \mathrm{Ohms}, \tau=l / v=100 \mathrm{ps}$, and
 $V_{\text {gen }}$ is a 1 V step-function.
a) $R_{L}=250 \Omega, R_{g e n}=250 \Omega$: Compute and plot $V_{i n}(t)$ using lattice diagram methods
b) $R_{L}=10 \Omega, R_{g e n}=10 \Omega$. Compute and plot $V_{i n}(t)$ using lattice diagram methods
c) $R_{L}=10 \Omega \mathrm{~s}, R_{\text {gen }}=250 \Omega$. Compute and plot $V_{\text {in }}(t)$ using lattice diagram methods

Problem 4: lumped-distributed relationships
$Z_{o}=50 \mathrm{Ohms}, \tau=l / v=100 \mathrm{ps}$, and $V_{g e n}$ is a 1 V step-function.

In each of the cases ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) below, replace the transmission-line with a T or Pi equivalent circuit, compute and compute and plot $V_{i n}(t)$ using basic circuit analysis. Hint: it is easiest to use a T equivalent for (a), a Pi equivalent for (b), and a Pi equivalent for (c). To make the analysis simpler, in cases (a) and (b) first compute L/R and RC time constants, and ignore either L or C if the associated time constant is more than 5:1 less than the dominant time constant. In case (c), the Pi equivalent has two capacitors, but one has a much shorter time constant $(C / 2) R_{L}$ than the other $(C / 2) R_{g e n}$; therefore ignore the capacitor $(C / 2)$ connected between the output and ground.
a) $R_{L}=250 \Omega, R_{\text {gen }}=250 \Omega$:
b) $R_{L}=10 \Omega, R_{g e n}=10 \Omega$.
c) $R_{L}=10 \Omega \mathrm{~s}, R_{g e n}=250 \Omega$.

Problem 5: lumped-distributed relationships
A transmission line (iii) has length $l=$ 10 cm and propagation velocity and v equal to the speed of light in Teflon (look up its dielectric constant). $Z_{o}=50$ Ohms.

a) The plate vertical separation is 1 mm . Using approximate microstrip-line formulas, compute the width of the conductor.
b) Using the relationship $L=Z_{o} \tau=Z_{o} l / v$, compute (ii) the line inductance. Compute the impedance $Z_{i n}=j \omega L$ from DC to a frequency of $f_{\text {high }}=v / l$
c) The transmission-line is short-circuited (i). Using the relationships $Z_{\text {load }}=0 \Omega$, $\Gamma_{\text {load }}=\left(\left(Z_{L} / Z_{o}\right)-1\right) /\left(\left(Z_{L} / Z_{o}\right)+1\right)$, $\Gamma_{i n}=\Gamma_{L} \exp (-j 2 \beta l)=\Gamma_{L} \exp (-j 2 \omega \tau)=\Gamma_{L} \exp (-j 4 \pi l / \lambda)$ and $Z_{i n}=Z_{0}\left(\left(1+\Gamma_{i n}\right) /\left(1-\Gamma_{i n}\right)\right)$
\ldots...derive an algebraic expression for $Z_{i n}$.
d) Using the Smith chart, compute $Z_{i n}$ at the following frequencies:

$$
f=0, v / 8 l, 2 v / 8 l, 3 v / 8 l, 4 v / 8 l, 5 v / 8 l, 6 v / 8 l, 7 v / 8 l,
$$

e) Using *cartesian* axes (straight lines, not a Smith chart), make a plot of the imaginary part of $Z_{i n}$, plotting the answers from parts (b), (c), and (d). Comment on the similarities and differences between the three curves

Problem 6: lumped-distributed relationships

A transmission line (iii) has length $l=$ 10 cm and propagation velocity, and v equal to the speed of light in Teflon (look up its dielectric constant). $Z_{o}=50$ Ohms.

a) Using the relationship $C=\tau / Z_{o}=l / v Z_{o}$, compute (ii) the line capacitance. Compute the impedance $Z_{i n}=1 / j \omega C$ from DC to a frequency of $f_{\text {high }}=v / l$
b) The transmission-line is short-circuited (i). Using the relationships $Z_{\text {load }}=\infty \Omega$, $\Gamma_{\text {load }}=\left(\left(Z_{L} / Z_{o}\right)-1\right) /\left(\left(Z_{L} / Z_{o}\right)+1\right)$, $\Gamma_{i n}=\Gamma_{L} \exp (-j 2 \beta l)=\Gamma_{L} \exp (-j 2 \omega \tau)=\Gamma_{L} \exp (-j 4 \pi l / \lambda)$ and $Z_{i n}=Z_{0}\left(\left(1+\Gamma_{i n}\right) /\left(1-\Gamma_{i n}\right)\right)$
....derive an algebraic expression for $Z_{i n}$.
c) Using the Smith chart, compute $Z_{\text {in }}$ at the following frequencies:
$f=0, v / 8 l, 2 v / 8 l, 3 v / 8 l, 4 v / 8 l, 5 v / 8 l, 6 v / 8 l, 7 v / 8 l$,
e) Using * cartesian* axes (straight lines, not a Smith chart), make a plot of the imaginary part of $Z_{i n}$, plotting the answers from parts (a), (b), and (c). Comment on the similarities and differences between the three curves

