ECE 145a /218A problem set 6a

Power amplifiers

Problem 1:
The FET has a small-signal parameters as below, and large-signal parameters as given to the right.
$g_{m}=1.0 \mathrm{mS} / \mu m \cdot W_{g} \quad R_{i}=1.0 / g_{m}$
$C_{g d}=0.0 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$
$C_{g s}=1.5 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$
$G_{d s}=0.1 \mathrm{mS} / \mu \mathrm{m} \cdot W_{g}$

The maximum safe drain-source voltage is 1.1 Volts, and the maximum drain current is 1.5 mA per micron of gate width Wg . The maximum gate width for an individual FET finger is 2 microns, if we wish to maintain the low input resistance Ri given above.
a) If we construct a multi-finger FET with $* 100^{*}$ such fingers, each of 2 microns width, in parallel, find the overall gm, Ri, Cgs, Rds, of the device. What is the maximum drain current? What are f_{τ} and $f_{\text {max }}$?
b) For this 100 -finger device, what is the optimum load impedance for maximum saturated output power ? Caution: you should *not* include the parallel loading of RDS in this calculation; this is a subtle point which arises because, in real FETs, RDS is biasdependent and becomes infinite at zero drain current.
c) Ignoring RDS (setting it to infinity), and choosing a design frequency of $f_{\max } / 10$, design a lumped LC matching network to match the input to 50 Ohms . Design a simple quarter-wave microstrip network to load the transistor with the optimum impedance d) Under the above conditions, calculate by hand the maximum amplifier output power and its power gain. Hint: it is not necessary to know the element values of the matching network to do this.
e) Using Wilkinson Power-combiners, shown above, and *four* power amplifiers from
part (c), above, draw the schematic for a 4:1 corporate power-combined power amplifier. What would the total maximum saturated output power now?

