ECE145a / 218a
Resistive Feedback Amplifiers

Mark Rodwell
University of California, Santa Barbara

rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax
Recall: there are 2 different reasons for impedance-matching:

1) Maximum power transfer
2) Avoiding gain ripple from standing waves on lines.

In resistive feedback amplifiers, feedback provides $Z_{in} = Z_{out} = Z_0$ in order to eliminate line reflections.

These are *not* designed for maximum power transfer, hence we do not obtain the transistor maximum gain.
World's Simplest Amplifier

Amplifier consists of transistor and bias tees, connected to input and output transmission lines.

Transmission lines are external to amplifier; reference planes are at line ends.
To find S-parameters, we compute gains and impedances with $Z_{gen} = Z_{load} = Z_0$.

Take the DC bias elements as implicit.

Use - for now - a highly simplified device model.

Circuit to analyze
Analysis

By inspection:

\[
S_{21} = 2 \frac{V_{out}}{V_{gen}} \bigg|_{z_{gen}=z_L=z_0} = \frac{-2g_mZ_0}{1 + j\omega Z_0 C_{gs}}
\]

\[
Z_{in} = \frac{1}{j\omega C_{gs}} \rightarrow S_{11} = \frac{Z_{in} / Z_o - 1}{Z_{in} / Z_o + 1}
\]

\[
R_{out} = \infty \rightarrow S_{22} = \frac{Z_{out} / Z_o - 1}{Z_{out} / Z_o + 1}
\]

What is wrong with this amplifier?

Though gain is lower than \(G_{\text{max}} \) (no matching), it may meet our needs!

More serious problem: large \(S_{11} \), \(S_{22} \) → standing waves → gain ripple.
Standing Waves

Reflections at both line ends will cause gain/phase variations of the form:

\[\frac{1}{1 - e^{-2j\beta l} \Gamma_S \Gamma_L} \]

hence gain will vary with both cable length and with frequency.

We need to fix this.
Eliminating Standing Waves

So, while we can directly match two stages directly, thus...

...this is only acceptable if line lengths are short and the connection permanent.

If lines are long, or the components modular, so that connections can be changed, we must match each device to Z_0.
Types of Impedance Matches

Reactive Impedance Matching (lossless):
Reflection coefficients $\rightarrow 0$.
No power reflected.
No signal power absorbed in matching networks.
\rightarrow Circuit Gain = device maximum available gain (maybe)

Resistive Impedance Matching (lossy):
Reflection coefficients $\rightarrow 0$.
No power reflected.
Signal power absorbed in matching networks.
\rightarrow Circuit Gain less than device maximum available gain
In the absence of transistor parasitics, lines are now terminated in Z_0.

Reflections are now (nearly) eliminated.

Power gain is wasted:
signal dissipation in terminations
Analysis

Circuit (bias implicit)

(over) - simplified device model

Circuit Model
We will pick \(R_{ds} \parallel R_L = Z_0 \)
Analysis

As always:

\[
S_{21} = 2 \frac{V_{out}}{V_{gen}} \bigg|_{Z_{gen}=Z_L=Z_0}
\]

By nodal analysis or MOTC:

\[
S_{21} = -(g_m Z_0 / 2) \frac{1 + b_1 s}{1 + a_1 s + a_2 s^2}
\]

where \(a_1 = C_{gs} (Z_0 / 2) + C_{gd} [(Z_0 / 2)(1 + g_m Z_0 / 2) + (Z_0 / 2)] \)

the terms \(a_2 \) and \(b_1 \) are relevant only at very high frequencies.

The Miller effect term should be obvious.
Analysis

\[S_{21} \equiv -(g_m Z_0 / 2) \frac{1}{1 + j\omega a_1} \quad \text{where} \quad a_1 = C_{gs} (Z_0 / 2) + C_{gd} \left[(Z_0 / 2)(1 + g_m Z_0 / 2) + (Z_0 / 2) \right] \]

\[f = \frac{1}{2\pi a_1} \]

Note the standard Bode Plot behavior with -20 dB/decade slope and 3 dB corner. Note that the \(S_{21} \) trajectory is a semicircle in the complex plane.
Input Impedance

Using the Miller Approximation:

Note that this (almost) follows a constant - G circle on the Smith chart.

Note the single - pole behavior of S_{11}.
Gain-Bandwidth Product

\[\| S_{21,\text{baseband}} \| \approx (g_m Z_0 / 2) \quad \text{and} \quad 1/2 \pi f_{\text{high}} \approx C_{gs} (Z_0 / 2) \quad \text{if} \quad C_{gd} \to 0 \]

So, gain - BW product \(=\| S_{21,\text{baseband}} \| f_{\text{high}} = g_m / 2\pi C_{gs} = f_\tau \)

A rough calculation only;
poorer bandwidth when other device parasitics are considered.
Simple Resistive-Terminated Amplifier: General Form

This stage generalizes to use with any g_m block.

Recall: extrinsic tranconductance for a transistor with emitter/source degeneration R_x is

$$g_{m,extrinsic} = \left(\frac{1}{g_{m,transistor} + R_x} \right)^{-1}$$
Resistive Feedback used
to provide input and output
impedances of Z_0

We want: $V_{out}/V_{in} = -A_v$ and $Z_{in} = Z_0$

We must find g_m, R_f necessary to obtain this.

If we are lucky, we will also get $Z_{out} = Z_0$.
Finding R_f:

Input current: $I_{in} = \frac{V_{in}}{Z_{in}} = \frac{V_{in}}{Z_0}$

Current in R_f:

$I_{R_f} = \frac{(V_{in} - V_{out})}{R_f} = \frac{(V_{in} + A_v V_{in})}{R_f} = \frac{V_{in} (1 + A_v)}{R_f}$

But: $I_{R_f} = I_{in}$

$\frac{V_{in}}{Z_0} = \frac{V_{in} (1 + A_v)}{R_f}$

$\rightarrow R_f = Z_0 (1 + A_v)$
Finding \(g_m \):

Current in \(R_f \):
\[I_{R_f} = \frac{V_{in}}{R_{in}} = \frac{V_{in}}{Z_0} \]

Current in load \(R_f \):
\[I_{out} = \frac{V_{out}}{Z_0} = -\frac{V_{in} A_v}{Z_0} \]

\(g_m \) block output current:
\[I_{g_m} = -g_m V_{in} = I_{out} - I_{R_f} = -\frac{V_{in} A_v}{Z_0} - \frac{V_{in}}{Z_0} = -\frac{V_{in} (1 + A_v)}{Z_0} \]

\[g_m = \frac{(1 + A_v)}{Z_0} \]
Finding Z_{out} (harder):

\[V_{in} = V_{test} \frac{Z_0}{(Z_0 + R_f)} \]

\[I_{test} = \text{current in } R_f + \text{current in } g_m \]

\[= \frac{V_{in}}{Z_0 - g_m V_{in}} \]

\[G_{out} = \frac{1}{R_{out}} = \frac{I_{test}}{V_{test}} = \frac{Z_0}{Z_0 + R_f} \left(\frac{1}{Z_0} - g_m \right) \]

\[G_{out} = \frac{Z_0}{Z_0 + Z_0 (1 + A_v)} \left(\frac{1}{Z_0} + \frac{1 + A_v}{Z_0} \right) \]

\[G_{out} = \frac{1}{2 + A_v} \cdot \frac{1}{Z_0} (2 + A_v) \]

\[G_{out} = \frac{1}{Z_0}!!!! \]

Output is impedance - matched
We want: \(V_{out} / V_{in} = -A_v \), \(Z_{in} = Z_0 = Z_{out} \)

This is obtained by setting:

\[
\begin{align*}
g_m &= \frac{1 + A_v}{Z_0} \quad \text{and} \\
R_f &= (1 + A_v)Z_0
\end{align*}
\]

Though, note that \(Z_{in} = Z_0 \) only if \(Z_L = Z_0 \)

and \(Z_{out} = Z_0 \) only if \(Z_{gen} = Z_0 \)
Broadband Feedback Amplifier: Why do it?

Why do this...

\[g_m = (1 + A_v) / Z_o \]

...instead of this?

\[g_m = 2 \cdot A_v / Z_o \]

Answer: more bandwidth, less noise (noise for a later discussion).
The device input capacitance C_{in} is proportional to its transconductance g_m. The feedback amplifier requires less $g_m \rightarrow$ less device C_{in}.

Highly simplified device model:

\[f_r = g_m / 2\pi C_{in} \]

\[\rightarrow C_{in} = g_m / 2\pi f_r \]
Capacitance as the Price for Transconductance

$$\tilde{C}_{in} = C_{in} / (1 + g_m R_d)$$

$$\tilde{g}_m = g_m / (1 + g_m R_d)$$

$$\rightarrow \tilde{C}_{in} = \tilde{g}_m / 2\pi f_T$$

Even with resistive degeneration, input capacitance is proportional to transconductance.

(relationships from analog design review notes set)
Broadband Feedback Amplifier: Bandwidth Analysis

\[C_{in} = \frac{g_m}{2\pi f_\tau} \text{ but } g_m = \frac{1 + A_v}{Z_0} \text{ so } C_{in} = \frac{(1 + A_v)}{2\pi f_\tau Z_0} \]

but \(f_{3dB} = \frac{1}{2\pi a_1} \) where \(a_1 = C_{in}(Z_0 || Z_0) = C_{in}Z_0 / 2 \)

\(\text{so } f_{3dB} = f_\tau \frac{2}{1 + A_v} \)

Less \(g_m \) required → less \(C_{in} \) → more bandwidth
Compare to Simple Resistive Amplifier

\[C_{in} = \frac{g_m}{2\pi f_{\tau}} \text{ but } g_m = 2 \cdot A_v / Z_0 \text{ so } C_{in} = 2 \cdot A_v / 2\pi f_{\tau} Z_0 \]

but \(f_{3dB} = 1 / 2\pi a_1 \text{ where } a_1 = C_{in} (Z_0 || Z_0) = C_{in} Z_0 / 2 \)

so \(f_{3dB} = \frac{f_{\tau}}{A_v} \)

More \(g_m \) required \(\rightarrow \) More \(C_{in} \) \(\rightarrow \) less bandwidth
Bandwidth Analysis with C_{gd} or C_{cb}

Slightly better device model:
include feedback capacitance

Straightforward to show by MOTC (analog notes)

\[a_1 \cong C_{gs} \left(Z_0 / 2 \right) + C_{gd} \left(R_f \parallel \left\{ Z_0 (1 + g_m Z_0) + Z_0 \right\} \right) \]

\[= C_{gs} \left(Z_0 / 2 \right) + C_{gd} \left(\left\{ Z_0 (1 + A_v) \right\} \parallel \left\{ Z_0 (1 + 1 + A_v) + Z_0 \right\} \right) \]

\[= C_{gs} \left(Z_0 / 2 \right) + C_{gd} Z_0 \frac{(1 + A_v) (3 + A_v)}{2 (2 + A_v)} \]