Problem 1:
The FET has a small-signal parameters as below, and large-signal parameters as given to the right.
\[g_m = 1.0 \text{mS} / \mu \text{m} \cdot W_g \quad R_i = 1.0 / g_m \]
\[C_{gd} = 0.0 \text{fF} / \mu \text{m} \cdot W_g \]
\[C_{gs} = 1.5 \text{fF} / \mu \text{m} \cdot W_g \]
\[G_{ds} = 0.1 \text{mS} / \mu \text{m} \cdot W_g \]

The maximum safe drain-source voltage is 1.1 Volts, and the maximum drain current is 1.5 mA per micron of gate width \(W_g \). The maximum gate width \textit{for an individual FET finger} is 2 microns, if we wish to maintain the low input resistance \(R_i \) given above.

a) If we construct a multi-finger FET with \(*100* \) such fingers, each of 2 microns width, in parallel, find the overall \(g_m \), \(R_i \), \(C_{gs} \), \(R_{ds} \), of the device. What is the maximum drain current? What are \(f_c \) and \(f_{\text{max}} \)?

b) For this 100-finger device, what is the optimum load impedance for maximum saturated output power? Caution: you should *not* include the parallel loading of \(R_{ds} \) in this calculation; this is a subtle point which arises because, in real FETs, \(R_{ds} \) is bias-dependent and becomes infinite at zero drain current.

c) Ignoring \(R_{ds} \) (setting it to infinity), and choosing a design frequency of \(f_{\text{max}} / 10 \), design a lumped LC matching network to match the input to 50 Ohms. Design a simple quarter-wave microstrip network to load the transistor with the optimum impedance.

d) Under the above conditions, calculate by hand the maximum amplifier output power and its power gain. Hint: it is not necessary to know the element values of the matching network to do this.

e) Using Wilkinson Power-combiners, shown above, and *four* power amplifiers from
part (c), above, draw the schematic for a 4:1 corporate power-combined power amplifier. What would the total maximum saturated output power now?