This is a 2-hour exam. There are 4 questions. Please don't turn the cover page until the exam is distributed to everyone.

Use any and all reasonable approximations in circuit analysis, after stating them.

Name: ____________________________

Problem 1, 15 points:
Basic Properties of S-Parameters

In the 2-port at right, $C=0.2$ pF and $R=50\Omega$. Find S_{21} and S_{11}. The system impedance is 50Ω.

Problem 2, 20 points
Impedance matching and the Smith Chart

Over a limited frequency range, the input impedance of a packaged FET can be approximated as a 0.5 nH inductance in series with $C=2.5$ pF and $R=25\Omega$.
Using the supplied impedance/admittance chart, design a lumped-element matching network to match the input to 50Ω at 3.18 GHz. Note that there may be several solutions: only give one, but make sure it does not use a series capacitor.

B. 10 points
Using the solution of part A as a prototypes, give 2 approximate designs of matching networks using high impedance (10Ω) and low impedance (10Ω) lines. Both lines have effective dielectric constants of 2. Give line lengths in units of distance.

Problem 3, 30 points
When operating at a collector current of 15 mA and a 5 volt collector-base voltage, the transistor below has $f_t=100$ GHz and $C_{cb}=10$ fF, and a 0.8 volt base-emitter voltage. $r_{bb}=0$ Ω and its parasitic series emitter resistance is also zero, $\beta=\infty$, and $r_{ce}=\infty$. Vcc is +15 volts and Vbb is -15 volts.

A. 7 points
With the transistor biased as above, the amplifier is to have an input and output impedance of 50 ohms and a forward gain (S_{21}) of 12 dB at mid-band. Find R_f and R_e.

B. 7 points
Given the stated bias conditions, find R_{bb} and R_{cc}.

C. 8 points
Calculate the 3-dB bandwidth of the forward gain S_{21}

D. 8 points
At the frequency which S_{21} is down 3 dB from the low-frequency value (part C) compute the magnitude of $S11$ in dB.

4. 35 points
Traveling-Wave Amplifiers, FET models
A GaAs Field-effect transistor has the equivalent circuit model on the left. $gm = 1/100\Omega$ and $Rds = 2000\Omega$. The device has $f_t = 50\ \text{GHz}$ and $f_{max} = 150\ \text{GHz}$. You will design a 4-FET TWA with the modified drain line design shown below. $Z_0 = 50\Omega$.

A. 7 points
First, give the values for Cgs and Ri

B. 7 points
Assume that the characteristic impedance of the gate line sections is 100Ω. What is the electrical length τ_1 of these line sections? What is the Bragg frequency on the gate line? Including the effects of the FET input capacitances, what is the delay between successive gates on the TWA?

C. 7 points
Now think carefully: what criteria must we place upon the drain line to have both the flattest possible frequency response and a 50Ω output impedance? Answer in words. Given these criteria, give values for Z_2 and τ_2.
D. 7 points
What is the low-frequency gain with drain line losses present? What would it be with zero drain line losses?
E. 7 points

Now neglect the drain line losses. What are the gate line losses per section at a frequency just below the gate-line Bragg frequency? Based upon this, what is the amplifier gain at that frequency?