ECE 145C / 218C, notes set xx: Power Combining

Mark Rodwell Doluca Family chair University of California, Santa Barbara

rodwell@ece.ucsb.edu

Multi-stage PAs: I_{max}, Z_{load}, transistor size problems

Consider this 2-stage amplifier: $P_{out1} = 1000 \text{ mW}; P_{in1} = 100 \text{ mW};$ $P_{out2} = 100 \text{ mW}; P_{in2} = 10 \text{ mW}$

Assume $(V_{\text{max}} - V_{\text{min}}) = 4$ Volts and recollect that $Z_L = 1/Y_L = R_L + j0\Omega = (V_{\text{max}} - V_{\text{min}})/I_{\text{max}}$ $I_{DC} = I_{\text{max}}/2$ $P_{RF,\text{max}} = (V_{\text{max}} - V_{\text{min}})I_{\text{max}}/8 = (V_{\text{max}} - V_{\text{min}})^2/8R_L$ Assume BJTs or FETs with $J_{\text{max}} = 2$ mA/ μ m current density

Then

Stage 1: $I_{DC} = 1$ A; $R_L = 2 \Omega$; $N_G W_G$ or $N_E L_E = 1000 \mu$ m Stage 2: $I_{DC} = 100$ mA; $R_L = 20 \Omega$; $N_G W_G$ or $N_E L_E = 100 \mu$ m

Extremely low load impedances, extremely high currents, extremely large transistor sizes. This is the microwave power-combining problem

Low impedances, high currents, big transistors

The impedance problem:

$$P_{RF,\max} = (V_{\max} - V_{\min})I_{\max} / 8 = (V_{\max} - V_{\min})^2 / 8R_L$$

$$= (V_{\max} - V_{\min}) / I_{\max}$$

$$\rightarrow Z_L = (V_{\max} - V_{\min})^2 / 8P_{RF,\max}$$
 Very low load impedance.

The current problem:

 $P_{RF,\max} = (V_{\max} - V_{\min})I_{\max} / 8 = (V_{\max} - V_{\min})^2 / 8R_L$ $\rightarrow I_{\max} = 8P_{RF,\max} / (V_{\max} - V_{\min}) \text{ Very high current; many transistor fingers}$

Transistor maximum finger length (1)

FET:

Gate resistance per finger $R_{G,finger} = k_1 W_g$ Gate resistance, N_g parallel fingers $R_G = k_1 W_g / N_g$ To avoid degrading f_{max} , need $R_G < (R_g + R_s)$ But $(R_g + R_s) = k_2 / N_g W_g$, $k_1 W_g / N_g < k_2 / N_g W_g$ Maximum finger length $W_{g,max} < \sqrt{k_2 / k_1}$

Bipolar:

Base metal resistance per finger $R_{BB,metalfinger} = k_1 L_E$ Base metal resistance, N_E parallel fingers $R_{BB,metal} = k_1 L_E / N_E$ To avoid degrading f_{max} , need $R_{bb,metal} < (R_{bb} + R_{ex})$ But $(R_{bb} + R_{ex}) = k_2 / N_E L_E$, $k_1 L_E / N_E < k_2 / N_E L_E$

Maximum finger length $L_{E,\max} < \sqrt{k_2 / k_1}$

			0	2		•		a [a	2		a) [2	
1										⊠			
	⊠	⊠		⊠	⊠	⊠	⊠		⊠	⊠		⊠	
W_{G}		⊠		⊠	⊠		⊠		⊠	⊠		⊠	
		⊠		⊠	⊠		⊠		⊠	⊠		⊠	
_							⊠		⊠				

Transistor maximum finger length (2)

If we can allow f_{max} to be degraded by the metal finger resistance with $f_{\text{max}}|_{\text{with_metal_finger_resistance}} = k_3 f_{signal}$ ($k_3 > 1!$)

then we can design the transistor multi-finger layout differently

FET: gate metal resistance charging time $=R_{metal}(C_{gs}+C_{gd}) \propto (\text{finger length})^2$ BJT: base metal resistance charging time $=R_{metal}(C_{be}+C_{cb}) \propto (\text{finger length})^2$

Since $R_{metal}(C_{gs}+C_{gd})$ (FET) or $R_{metal}(C_{be}+C_{cb})$ (Bipolar) will be one term in f_{max} , $f_{max}|_{with_metal_finger_resistance} = k_3 f_{signal}$ implies that $R_{metal}(C_{gs}+C_{gd}) \propto 1/f_{signal}$ $f_{max}|_{with_metal_finger_resistance} = k_3 f_{signal}$ implies that $R_{metal}(C_{be}+C_{cb}) \propto 1/f_{signal}$

Given this assumption

Maximum finger length $\propto 1/\sqrt{f_{signal}}$ Current per finger $\propto 1/\sqrt{f_{signal}}$

High Power: Many transistor fingers

 $P_{RF,\max} = (V_{\max} - V_{\min})I_{\max} / 8 \rightarrow I_{\max} = 8P_{RF,\max} / (V_{\max} - V_{\min})$ But $I_{\max} = N_E L_E J_{E,\max}$ (Bipolars) or $N_G W_G J_{S,\max}$ (FET)

$$\begin{split} N_{E}L_{E} &= 8P_{RF,\max} / J_{E,\max} (V_{\max} - V_{\min}) & \text{Bipolars} \\ N_{G}W_{G} &= 8P_{RF,\max} / J_{s,\max} (V_{\max} - V_{\min}) & \text{FETs} \end{split}$$

Given that there is also a maximum finger length $(L_{E,\max}, W_{g,\max})$, high-power transistors must have many fingers.

gate fingers = N_G FET \boxtimes \square \boxtimes W_{G} \boxtimes \square \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \square \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes Bipolar \boxtimes =

emitter fingers = N_F

The multi-finger feed network then degrades the transistor $(f_{\tau}, f_{\text{max}})$.

Multi-finger transistor feed network parasitics

The finger-finger interconnects can be modelled as either transmission-lines or lumped *RLC* networks.

Transistor (f_{τ}, f_{\max}) will be degraded

Can we avoid this ?

The answer: only in part.

Multi-finger transistor feed network parasitics

Can we avoid degrading $(f_{\tau}, f_{\text{max}})$ by using impedance-matched lines ?

Transistor with N_G (or N_E) fingers. Load impedance at end of each line: $Z_{end} = N_G Z_{Load}$

Transistor cell with internal matched-impedance interconnects: $Z_{L,finger} = Z_{end}$ which requires $Z_{line} = Z_{L,finger} = Z_{end} = N_G Z_{Load}$

But note: 1) realizable on-chip transmission-lines have $Z_{line,max} \approx 80-90 \Omega$ $2)Z_{L,finger} = \begin{cases} (V_{\max} - V_{\min}) / J_{S,\max} W_E & \text{FETs} \\ (V_{\max} - V_{\min}) / J_{E,\max} L_E & \text{Bipolars} \end{cases}$ 3) 240 nm InP HBT: $(V_{\text{max}} - V_{\text{min}}) \cong 3.5 \text{V};$ $J_{E,\text{max}} \cong 3 \text{ mA}/\mu\text{m}, L_{E,\text{max}} \approx 6 \ \mu\text{m} @ f_{\text{signal}} = 250 \text{ GHz}$ $\rightarrow Z_{L, finger} = 194 \ \Omega$ 3) W-band GaN HEMT : $(V_{\text{max}} - V_{\text{min}}) \cong 25 \text{V};$ $J_{E,\text{max}} \cong 1.67 \text{ mA}/\mu\text{m}, W_{G,\text{max}} \approx 30 \ \mu\text{m} @ f_{\text{signal}} = 94 \text{ GHz}$ $\rightarrow Z_{L, finger} = 500 \ \Omega$

Individual transistor fingers cannot be connected with impedance-matched interconnects

Transistor layouts: *I*, *V*, *Z*, and *P*.

 R_{I} below 25 Ω or above 75 Ω is hard to realize.

$$I_{\text{max}} = \frac{\Delta V}{R_L} = J_{\text{max}} \cdot (\text{number fingers})(\text{finger length});$$

$$\rightarrow$$
 (number fingers)(finger length) = $\frac{\Delta V}{J_{\text{max}}R_L}$

Large ΔV , small J_{max} , or small R_L : long fingers or many fingers \rightarrow layout parasitics $\rightarrow \text{lower } f_{\text{max}}$.

Higher frequencies need smaller layout parasitics \rightarrow shorter fingers (length_{max} $\propto f^{-1/2}$), fewer fingers ($\#_{max} \propto f^{-1}$) Technologies with high ΔV and low J_{max} are problematic.

Hierarchy: multi-finger transistors & power-combiner

We separate the overall power-combining structure into 3 regions

1) A single transistor finger of the maximum allowable length $Z_{L,finger} = (V_{max} - V_{min}) / J_{E,max} L_{E,max}$ (bipolars) or $(V_{max} - V_{min}) / J_{S,max} W_{G,max}$ (FETs) for these, $Z_{L,finger} >> Z_{line,max}$

2) multi-finger transistor cells with N_E or N_G fingers.

for these
$$Y_{L,cell} \approx N_E \frac{J_{E,\max} L_{E,\max}}{V_{\max} - V_{\min}} + j\omega C_{out}$$
 (bipolars) or $N_G \frac{J_{s,\max} W_{g,\max}}{V_{\max} - V_{\min}} + j\omega C_{out}$ (FETs)
The cell has $Z_{L,cell} \leq Z_{line,\max}$

3) The power-combiner.

With overall load Z_{Load} , each cell is loaded in $Z_{L,cell}$

Power Combiners: with and without inductive pre-tuning

 $Y_{L,opt} = G_{L,opt} + jB_{L,opt};$

given transistor capacitances, $jB_{L,opt}$ is usually inductive

Without inductive pre-tuning: power combiner provides $Y_{L,opt} = G_{L,opt} + jB_{L,opt}$

With inductive pre-tuning: power combiner provides $Y_{in,combiner} = G_{L,opt} + j0$ S

Wilkinson Power-Combiner

Corporate Wilkinson Power-combiner

Requires inductive pre-tuning

Assume: all these lines are $\sqrt{2} \times 50\Omega$ impedance Assume: all these lines are quarter-wavelength. Then: these are Wilkinson power-combiners Provide 2^N:1 power-combining

Corporate Wilkinson combiners are *rare* in ICs. Why? Signal passes through several 71 Ω , $\lambda/4$ lines. $\lambda/4$ lines are very long.

 71Ω lines are narrow and hence high loss per unit length. Structure is large and uses much IC die area.

Losses of on-wafer microstrip line

Keysight/ADS/Linecalc formula-based calculations of line skin-effect loss

Recollect line loss analysis from ECE145A/218A

Assumed geometry (lines on InP HBT IC) insulator: benzocyclobutene (BCB)

 6μ m thick

 $\epsilon_r = 2.65$

conductors: gold, 200 nm thick

Line losses on Si CMOS IC will be similar: similar insulator thickness, slightly higher \mathcal{E}_r . slightly more conductive (Cu) conductors

Simulations neglect radiation losses
(so actual losses are somewhat greater)

	ł						
<u>Simulation</u>	ptions <u>H</u> elp						
) 📂 🖬 🗯							
omponent							
ype MLIN	▼ ID ML	JN: TL20		•			
Cubstrate Para	motors						
Substrate Fara	meters			Physical			<u>^</u>
ID MOUNT				w	42.024300	um 🔽	
ID MSUDI				L	233.318000	um 🗐	
н	6.000	um	I -			N/A 🔽	
Er	2.650	N/A	Y		,	N/A 🔻	
Mur	1.000	N/A	Y	Curthering			
Cond	4.1E7	N/A	× -	Synthesize	Analy	ze	Calculated Results
Hu	1e+36	um	-	L			K_Eff = 2.339 A DB = 0.137
т	0.200	um	-	Electrical			SkinDepth = 0.006
TanD	0.000	N/A		ZO	25.000	Ohm 💌	
Component Para	ameters			E_Eff	90.000	deg 💌	
Freq	210.000	GHz	-			N/A 💌	
Wall1	1.0E+30	um	•			N/A 💌	
Wall2	1.0E+30	um	-			N/A 💌	
					,	,	1
ues are consis	tent						
// - J=				_			
Substrate Para	imeters						A 2
				Physical			
ID MSub1			•	W	26.687200	um 💌	
н	6 000	um	T	L	237.242000	um 💌	
Fr	2.650	N/A				N/A 💌	
Mur	1 000	N/A	-			N/A 💌	
Cond	4167	N/A		Synthesize	Analy	ze	Calculated Results
Hu	10+36	lum	-		1		K_Eff = 2.263
т	0.200	lum	-				A_DB = 0.156 SkinDepth = 0.006
TanD	0.000	N/A	<u> </u>	Electrical	25.250		
Component Par	rameters			20	133.330		
componential	diffection of the second			= = <i>tt</i>			
From	210.000	GH *	-	E_Eff	90.000	deg 💌	
Freq	210.000	GHz	•	E_Eff	90.000	deg 🔹	
Freq Wall1	210.000 1.0E+30	GHz	-	E_Eff	90.000	Ideg N/A N/A	
Freq Wall1 Wall2	210.000 1.0E+30 1.0E+30	GHz um um	•	E_Eff	90.000	Image: Constraint of the second secon	
Freq Wall1 Wall2 lues are consis	210.000 1.0E+30 1.0E+30 3.0E+30	GHz um um	* * *	E_Eff	90.000	Image: Onim Image: Onim Image: Onim <td></td>	
Freq Wall1 Wall2 Iues are consis	210.000 1.0E+30 1.0E+30 1.0E+30	GHz um um	•	E_Eff	90.000	I deg N/A N/A N/A M/A	
Freq Wall1 Wall2 Iues are consis ID MSub1	210.000 1.0E+30 1.0E+30 stent	GHz Jum Jum	•	E_Eff W L	90.000	Image: Onimetic of the second seco	
Freq Wall1 Wall2 Iues are consis ID MSub1 H	210.000 1.0E+30 1.0E+30 stent 6.000	GHz Jum Jum	· · ·	E_Eff W L	90.000 16.111300 241.766000	Onm • deg • N/A • N/A • um • um •	
Freq Wall1 Wall2 IUEs are consis ID MSub1 H Er	210.000 1.0E+30 1.0E+30 1.0E+30 5.000 2.650	GHz um um um N/A	Y Y Y Y	E_Eff W L	90.000	Omm Y deg Y N/A Y N/A Y um Y N/A Y N/A Y N/A Y	
Freq Wall1 Wall2 IUEs are consiss ID MSub1 H Er Mur	210.000 1.0E+30 1.0E+30 stent 6.000 2.650 1.000	GHz um um MA N/A	• • •	E_Eff W L	90.000	Unm Y deg Y NIA Y NIA Y Um Y Um Y N/A Y	
Freq Wall1 Wall2 IUEs are consiss ID MSub1 H Er Mur Cond	210.000 1.0E+30 1.0E+30 stent 6.000 2.650 1.000 4.1E7	GHz um um N/A N/A N/A		E_Eff W L	90.000 16.111300 241.766000 Analy	I I I I I I I I I I I I I I I I I I I	Calculated Results
Freq Wall1 Wall2 ID MSub1 H Er Mur Cond Hu	210.000 1.0E+30 1.0E+30 stent 6.000 2.650 1.000 1.000 1.000 1.000 1.000	GHz um um N/A N/A N/A um		E_Eff L Synthesize	90.000 16.111300 241.766000 Analy	Image: Image of the state of the s	Calculated Results K Eff = 21.79 A DB = 0.1860
Freq Wall1 Wall2 ID MSub1 H Er Mur Cond Hu T	210.000 1.0E+30 1.0E+30 stent 6.000 2.650 1.000 4.1E7 1e+36 0.200	GHz um um N/A N/A N/A um um		E_Eff W L Synthesize Electrical	90.000 16.111300 241.766000 Analy	Image: Constraint of the second sec	Calculated Results K.Eff = 2.179 A.DB = 0.186 SkinDepth = 0.006
Freq Wall1 Wall2 IUES are consis ID MSub1 H Er Cond Hu T TanD	210.000 1.0E+30 1.0E+30 stent 6.000 2.650 1.000 4.1E7 1e+36 0.200 0.200	GHz Jum Jum M/A M/A M/A Jum Jum Jum		E_Eff W L Synthesize Electrical Z0	90.000 16.111300 241.766000 Analy 50.000	Image: 1	Calculated Results K Eff = 2.179 A DB = 0.186 SkinDepth = 0.006
Freq Wall Wall Iues are consist ID MSub1 H Fr Cond Hu T Tann Component Para	210.000 1.0E+30 1.0E+30 stent 56.000 2.650 1.000 4.1E7 1e+36 0.200 0.000 ameters	GHz Jum Jum M/A M/A M/A M/A M/A Jum Jum		E_Eff W L Synthesize Electrical ZO E E_Eff	90.000 16.111300 241.766000 50.000 90.000	Ohm ▼ deg ▼ N/A ▼ N/A ▼ N/A ▼ N/A ▼ N/A ▼ N/A ▼ N/A ▼ N/A ▼ Other ▼ deg ▼	Calculated Results K Eff = 2179 A_DB = 0.186 SkinDepth = 0.006
Freq Wall lues are consist ID Msub1 H Er Mur Cond Hu T TanD Component Par. Freq	210.000 1.0E+30 1.0E+30 2.650 1.000 4.1E7 1e+36 0.200 1.000 ameters 210.000	GHz um um N/A N/A N/A N/A Um um um GHz	· · · · · · · · · · · · · · · · · · ·	E_Eff W L Synthesize Electrical Z0 E_Eff	90.000 16.111300 241.766000 50.000 90.000	Iohm Y deg Y NA Y	$\begin{tabular}{ c c c c } \hline \hline & $
Freq Wall1 Wall2 ID MSub1 H Er Mur Cond Hu T Tanh Component Part Freq Wall1	210.000 1.0E+30 1.0E+30 3tent 6.000 2.650 1.000 4.1E7 1e+36 0.200 1.000 ameters 210.000 1.0E+30	GHz um 100 101 101 101 101 101 101 101 101 10	× × × × × × × ×	E_Eff W L Synthesize Electrical Z0 E_Eff	90.000 16.111300 241.766000 50.000 90.000	Ohm Y Ideg Y IVA Y	Calculated Results K Eff = 2179 A DB = 0186 SkinDepth = 0.006

On-Wafer Interconnect Losses

Interconnects in packages and on PCBs:

 $H \propto 1/\text{frequency}$ (to control radiation loss) loss (dB/mm) \propto (frequency)^{3/2} loss (dB/wavelength) $\propto \sqrt{\text{frequency}}$

Interconnects in ICs:

H is independent of frequency

loss (dB/mm) $\propto \sqrt{\text{frequency}}$

loss (dB/wavelength) $\propto 1/\sqrt{\text{frequency}}$

Losses on a quarter-wave impedance transformer

On a transmission-line:

$$V(z,t) = V^{+}(z)e^{j\omega t} + V^{-}(z)e^{j\omega t} = V^{+}(0)e^{j\omega t}e^{-j\beta z}e^{-\alpha z} + V^{-}(z)e^{j\omega t}e^{j\beta z}e^{\alpha z}$$

Note: $e^{-\alpha z}$ voltage attenuation, $e^{-2\alpha z}$ power attenuation

On a quarter-wave line:

 $Z_{line} = \sqrt{Z_{in}Z_{load}} , \Gamma = \left(\left(Z_{load} / Z_{line} \right) - 1 \right) / \left(\left(Z_{load} / Z_{line} \right) + 1 \right)$

Forward and reverse waves: quarter-wave line losses are larger than single-pass $(e^{-2\alpha z})$ loss We can show that:

$$\frac{P_{out}}{P_{in}} = \frac{\left(1 - ||\Gamma||^{2}\right)^{2} e^{-2\alpha l}}{\left(1 - e^{-2\alpha l} ||\Gamma||^{2}\right)^{2}} = \frac{\left(1 - \left\|\frac{\sqrt{Z_{load}/Z_{in}} - 1}{\sqrt{Z_{load}/Z_{in}} + 1}\right\|^{2}\right)^{2} e^{-2\alpha l}}{\left(1 - e^{-2\alpha l} \left\|\frac{\sqrt{Z_{load}/Z_{in}} - 1}{\sqrt{Z_{load}/Z_{in}} - 1}\right\|^{2}\right)^{2}} = \frac{\left(1 - \left\|\frac{\sqrt{Z_{load}/Z_{in}} - 1}}{\sqrt{Z_{load}/Z_{in}} + 1}\right\|^{2}\right)^{2} e^{-2\alpha l}}{\left(1 - e^{-2\alpha l} \left\|\frac{\sqrt{Z_{load}/Z_{in}} - 1}}{\sqrt{Z_{load}/Z_{in}} + 1}\right\|^{2}\right)^{2}}$$

Quarter-wave line losses increase with increased impedance transformation ratio

ass notes, M. Rodwell, copyrighted 2012-2024 Low-Loss Corporate Combiners (Inductively-pretuned)

Single-($\lambda/4$) combiners are much less lossy Each design uses a single *effective* $\lambda/4$ section. Shorter lines, $low-Z_{o}$ lines \rightarrow lower loss But, low loss only if transistor cells fit.

... if they don't fit, then the non- $\lambda/4$ lines must be made longer, and losses will increase.

Low-Loss Corporate Combiners: Analysis

Low-Loss Corporate Combiners: Analysis

Design example (200 GHz PA)

The *first pass* of the IC power-combining network was designed using the idealized 4:1 network shown.

Line parameters were subsequently adjusted to accommodate probe parasitics, etc.

Note the uncontrolled-impedance lines within the multi-finger transistor cells (these almost too small to see)

inductive pre-tuning lines (also DC bias feed)

class notes, M. Rodwell, copyrighted 2012-2024 PAs with corporate & cascade combining

Teledyne 250nm InP HBT technology

Ahmed et al., 2020 IMS, 2020 EuMIC, 2021 IMS, 2021 RFIC

140GHz, 20.5dBm, 20.8% PAE

130GHz, 200mW, 17.8% PAE

194GHz, 17.4dBm, 8.5% PAE

266GHz, 16.8dBm, 4.0% PAE

Design of Non-Wilkinson Combiners

The equivalent circuit: a multi-section transmission-line tuning network

Shunt elements (inductive lines, capacitors) can also be added.

Line parameters are adjusted to reach $Z_{l,opt}$.

CAD approach: all similar lines defined by shared variables, simultaneously adjusted

Even-mode equivalent circuit

23

Design: Multi-Finger Amplifiers: spatial mode instabilities

If each transistor finger is individually stabilized, high-order modes are stable.

Amplifier layout does not always allow sufficient space for this.

All spatial modes must then be stabilized.

Stabilization method: bridging resistors parallel loading of higher-order modes selected such that (Z_s, Z_L) presented to device lie in the stable regions

Combiner without inductive pre-tuning.

Combiner without inductive pre-tuning.

Again:

The equivalent circuit:

a multi-section transmission-line tuning network

Shunt elements (inductive lines, capacitors) can also be added.

Line parameters are adjusted to reach $Z_{l,opt}$.

Combiner without inductive pre-tuning.

Computer-aided design (CAD) approach: all similar lines defined by shared variables, simultaneously adjusted, and loadline of one transistor cell monitored in simulation.

class notes, M. Rodwell, copyrighted 2012-2024

Examples: PAs with corporate combining

Design: Jonathan Hacker, Teledyne (at the time, Rockwell Scientific)

Power combiners without inductive pre-tuning

Bridging resistors for odd mode stabilization.

Transformers for impedance transformation

Here the transformer changes (decreases) the real part of the load admittance.

Additional tuning elements used to adjust $Im(Y_L)$

Transformers have extensive parastics and require careful electromagnetic modeling

Transformers for power combining

With ideal transformers:

$$\begin{split} V_p &= V_o/2\\ I_P &= I_o = V_o \ / \ R_L = 2V_P \ / \ R_L\\ &\rightarrow V_P \ / \ I_P = R_L \ / \ 2 \end{split}$$

1) Each PA is loaded in $R_L / 2$, not R_L Can use 2:1 larger $N_g W_g$ or 2:1 larger $N_E L_E$ \rightarrow 2:1 larger output power for *each* element

2) Total output power from 2 PA cells

 \rightarrow 4:1 net increase in P_{out} even with 1:1 transformer turns ratio

Transformers for power combining

I. Aoki *et al.* IEEE JSSC,March 2002

The transformer primary is segmented into 8 separate sub-windings.

With ideal transformers:

$$\begin{split} V_p &= V_o/8\\ I_P &= I_o = V_o \ / \ R_L = 8 V_P \ / \ R_L\\ &\rightarrow V_P \ / \ I_P = R_L \ / \ 8 \end{split}$$

1) Each PA is loaded in $R_L / 8$, not R_L Can use 8:1 larger $N_g W_g$ or 8:1 larger $N_E L_E$ \rightarrow 8:1 larger output power for *each* element

2) Total output power from 8 PA cells

 \rightarrow 64:1 net increase in P_{out} even with 1:1 transformer turns ratio Limits to technique: real vs_ideal transformers

Limits to technique: real vs. ideal transformers. Very low $(R_L / 8) \rightarrow$ interconnect parasitics

3-conductor transmission Lines: series-connected lines

Coaxial transmission-line between m_2 and m_3 characteristic impedance $Z_{0,2-3}$

Coaxial transmission-line between m_1 and m_2 characteristic impedance $Z_{0,1-2}$

Both !

 V_{gen1-2} launches input voltage wave on (m_1, m_2) transmission-line V_{gen2-3} launches input voltage wave on (m_2, m_3) transmission-line

These transmission-lines are in *series*

Other 3-conductor transmission Line Geometries

These more suitable for IC implementations

3-Conductor Line Circuit Symbol

We need a circuit symbol that is easier to draw.

...but if you are having trouble visualizing 3-conductor-line operation

...go back to drawing them as coaxial cables.

Balun Power Combiner

As with the transformer design, each transistor is loaded in 25Ω

- \rightarrow 2:1 greater $N_g W_g$ than FET that would drive 50 Ω
- \rightarrow 2:1 greater P_{out} than FET that would drive 50 Ω

2 such FETs.

 \rightarrow 4:1 greater P_{out} than FET that would drive 50 Ω

Amplifier with 2:1 balun combiners

As with the transformer design, each transistor is loaded in 25Ω $\rightarrow 2:1$ greater $N_E L_E$ than BJT that would drive 50Ω $\rightarrow 2:1$ greater P_{out} than BJT that would drive 50Ω

2 such BJTs.

 \rightarrow 4:1 greater P_{out} than BJT that would drive 50 Ω

Note that baluns also provide DC bias feeds

Amplifier with 2:1 balun combiners

Amplifier with 2:1 balun combiners

1) M_1 as a GND

2) Slot-type transmission lines (M_1-M_2) , AC shorts (2 pF MIM) at line ends.

3) Microstrip line (M₂-M₃), E-field shielding

4) Side shields to prevent M₃-M₁ coupling

Amplifier with balun combiners

analysis: Park, IEEE JSSC 2018

Linear and circular baluns

The two linear baluns are clearly electrically identical

...as is the round balun

The round balun seems to be similar to a transformer.

This deserves further consideration

ns to be similar

Circular balun

This round balun seems to be very similar to a transformer....

Fig. 2. Ring-shaped sub- $\lambda/4$ 2-way balun.

Daneshgar 2014 IEEE IMS symposium

(0)

Fig. 3. Schematic diagram of the single-stage PA.

Transformers analyzed as multi-conductor lines (1)

Analyze both using modes on 3-conductor transmission-lines

Balun:

two shunt stubs

Transformer two shunt stubs,

one series stub

Here, we have precisely defined a constant m_1 -to- m_2 separation distance, i.e. the ground plane opening dimensions, to precisely define $Z_{0,1-2}$

class notes, M. Rodwell, copyrighted 2012-2024

Transformers analyzed as multi-conductor lines (2)

Analyze both using modes on 3-conductor transmission-lines

Balun:

two shunt stubs

Transformer two shunt stubs, one series stub

Here, as is more typical for transformers we do not have constant m_1 -to- m_2 separation, so $Z_{0,1-2}$ is less to precisely defined.

This transformer equivalent circuit model is nevertheless informative.

class notes, M. Rodwell, copyrighted 2012-2024

Transformers analyzed as multi-conductor lines (3)

Analyze transformer / balun using 3-conductor transmission-line models

Transformer: two shunt stubs, one series stub

class notes, M. Rodwell, copyrighted 2012-2024

class notes, M. Rodwell, copyrighted 2012-2024

Differential Transformers as multi-conductor lines

analysis: Park, IEEE JSSC 2018

Transformer operation can be visualized, and analyzed, using multi-conductor line models

Other Transmission-line impedance transformers

Many such structures.

Widely used in 1970-1980's discrete-transistor RF PAs

See Motorola RF Device Data Handbook (1980's)

Other Transmission-line impedance transformers

Many such structures.

Widely used in 1970-1980's discrete-transistor RF PAs

See Motorola RF Device Data Handbook (1980's)

Transistor Series-Connections ("Stacking")

N parallel-connected transistors

 $V_{out,pp} = (V_{\max} - V_{\min})$ $I_{out,pp} = NI_{\max}$ $P_{out} = V_{out,pp}I_{out,pp} / 8 = N(V_{\max} - V_{\min}) / I_{out,pp}$ $R_{load} = V_{out,pp} / I_{\max} = (V_{\max} - V_{\min}) / NI_{\max}$

N series-connected transistors

$$V_{out,pp} = N(V_{max} - V_{min})$$

$$I_{out,pp} = I_{max}$$

$$P_{out} = V_{out,pp} I_{out,pp} / 8 = N(V_{max} - V_{min}) / I_{out,pp}$$

$$R_{load} = V_{out,pp} / I_{max} = N(V_{max} - V_{min}) / I_{max}$$

$$MW_g \leftarrow MI - V_g \leftarrow$$

High power obtained with higher external load impedances. Internal node impedances are lower Capactive volage dividers provide appropriate voltage distribution. Inductors tune capacitors. Design considerably more complex given transistor with parasitic R's and C's. M. Shifrin et al, 1992 IEEE Mi

M. Shifrin et al, 1992 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp S. Pornpromlikit et al, 2011 IEEE Compound Semiconductor Integrated Circuit Symp

Series amplifier design by 2-port techniques (1)

First measure or simulate the transistor at desired output power. Load pull simulation in common-base

Adjust Z_L for optimum P_{out} or optimum PAE.

Record *vector* (amplitude and phase) values for $(V_{out,t}, V_{in,t}, I_{out,t}, I_{in,t})$

Equations use RMS quantities throughout $(V_{out,t}, V_{in,t}, I_{out,t}, I_{in,t})$ and, given large-signal operation, are vector amplitudes at f_{signal}

Define: $P_{in,t} = \operatorname{Re}(V_{in,t}I_{in,t}^*)$, $P_{out,t} = \operatorname{Re}(V_{out,t}I_{out,t}^*)$ Define: $P_{added} = P_{out,t} - P_{in,t}$

Optimum load impedance: $Z_{load,t} = V_{out,t} / I_{out,t}$ Transistor input impedance: $Z_{in,t} = V_{in,t} / I_{in,t}$

P_{in,t}

Ahmed S. H. Ahmed, 2018 EUMIC

Padded Pout,t

class notes, M. Rodwell, copyrighted

Series amplifier design by 2-port techniques (2)

For some stage, select some $P_{out} > P_{out,i}$, we then have: $V_{in} = V_{in,i} + V_{common}$, $V_{out} = V_{out,i} + V_{common}$, $P_{in} = \operatorname{Re}(V_{in}I_{in,i}^{*})$, $P_{out} = \operatorname{Re}(V_{out}I_{out,i}^{*})$, $P_{added} = P_{out} - P_{in}$ Required common-lead impedance jX_{common} $P_{out} = \operatorname{Re}(V_{out,i}I_{out,i}^{*}) = \operatorname{Re}(V_{out,i}I_{out,i}^{*} + V_{common}I_{out,i}^{*}) = \operatorname{Re}(V_{out,i}I_{out,i}^{*} + jX_{common}I_{common}I_{out,i}^{*})$ $P_{out} = \operatorname{Re}(V_{out,i}I_{out,i}^{*} - V_{in,i}I_{in,i}^{*} + jX_{common}I_{out,i}^{*}) = \operatorname{Re}(P_{added} + V_{in,i}I_{in,i}^{*} + jX_{common}I_{common}I_{out,i}^{*})$ $P_{out} = \operatorname{Re}(jX_{common}(I_{out,i} - I_{in,i})I_{out,i}^{*}) = \operatorname{Re}(jX_{common}(I_{out,i}, I_{out,i}^{*}))$ $X_{common} = \frac{P_{out} - P_{out,i}}{\operatorname{Re}(j(I_{out,i}I_{out,i}^{*} - I_{in,i}I_{out,i}^{*}))} = \frac{P_{out} - P_{out,i}}{\operatorname{Im}(I_{out,i}I_{out,i}^{*} - I_{in,i}I_{out,i}^{*})}$ P_{in} P_{in} P_{in} P_{in} P_{in} P_{in} P_{in} P_{in} P_{in} P_{added} P_{out}

Required transistor load impedance:

$$\begin{split} Z_{Load} &= V_{out} / I_{out,t} = V_{out,t} / I_{out,t} + V_{common} / I_{out,t} = V_{out,t} / I_{out,t} + jX_{common} I_{common} / I_{out,t} \\ &= V_{out,t} / I_{out,t} + jX_{common} (I_{in,t} - I_{out,t}) / I_{out,t} = V_{out,t} / I_{out,t} + jX_{common} (I_{in,t} / I_{out,t} - 1) \\ &= Z_{Load,t} + jX_{common} (I_{in,t} / I_{out,t} - 1) \end{split}$$

Resulting input impedance:

$$Z_{in} = V_{in} / I_{in,t} = V_{in,t} / I_{in,t} + V_{common} / I_{in,t} = V_{in,t} / I_{in,t} + jX_{common} I_{common} / I_{in,t}$$

= $V_{in,t} / I_{in,t} + jX_{common} (I_{in,t} - I_{out,t}) / I_{in,t} = V_{in,t} / I_{in,t} + jX_{common} (1 - I_{out,t} / I_{in,t})$
= $Z_{in,t} + jX_{common} (1 - I_{out,t} / I_{in,t})$

Series amplifier design by 2-port techniques (3)

Stack synthesis: # emitter fingers: $N_E, N_{E1}, N_{E2}, N_{E3}$. Emitter length per finger: $L_E, L_{E1}, L_{E2}, L_{E3}$ As long as DC currents are isolated between stages, $N_E L_E$ can differ between stages

This gives:

$$\begin{split} I_{out3} / N_{E3}L_{E3} &= I_{out2} / N_{E2}L_{E2} = I_{out1} / N_{E1}L_{E1} = I_{out} / N_{E}L_{E} \\ I_{in3} / N_{E3}L_{E3} &= I_{in2} / N_{E2}L_{E2} = I_{in1} / N_{E1}L_{E1} = I_{in} / N_{E}L_{E} \\ P_{Added3} / N_{E3}L_{E3} &= P_{Added2} / N_{E2}L_{E2} = P_{Added1} / N_{E1}L_{E1} = P_{Added} / N_{E}L_{E} \end{split}$$

Stages can be designed to add power in any desired progression $P_{in}, P_{out1}, P_{out2}, P_{out3}, \dots$ as long as $P_{outN} / P_{out,(N-1)} \le P_{out,T} / P_{in,T}$

Cascade combining as stacking plus matching

A. S. H. Ahmed et al, 2018 EuMIC (UCSB) A. S. H. Ahmed, et al, 2021 RFIC Symposium

Capacitively degenerated common-base = cascade combining

Lower gain, same peak PAE, higher PAE at P_{1dB} .

This is the same as cascade combining.

Capacitive degeneration: optimum gain

Capacitive degeneration: no effect on peak PAE....given lossless embedding

No capacitive degeneration: <u>more</u> gain compression @ P_{1dB}. X <u>more</u> gain @ P_{1dB} ✓ input matching losses have <u>less</u> effect on PAE ✓

With capacitive degeneration: <u>less</u> gain compression @ P_{1dB}. ✓ <u>less</u> gain @ P_{1dB} X input matching losses have <u>more</u> effect on PAE X

Design for greatest PAE @ P_{1dB} balances these two considerations.

Other cascade combining forms: useful & not.

Series reactance: voltages add, Z_{load} increases. output powers add if $V_{out,Amp} \& V_{added}$ are in phase.

Shunt reactance: currents add, Z_{load} decreases. output powers add if $I_{out,Amp} \& I_{added}$ are in phase.

Even simple C_{cb}/C_{gd} feed-forward sums powers...if $I_{out,Amp} \& I_{added}$ are not exactly in quadrature

$$PAE = \eta_{\text{collector/drain}} \cdot \left(1 - \frac{1}{G}\right)$$

Lossless embedding: PAE is fixed, but G and η vary. $\rightarrow \eta$ is not a useful measure of transistor peformance

Power combining methods

Distributed Active Transformer

I. Aoki, IEEE Trans MTT, Jan. 2002

Balun series-connected

 $\lambda/4$ baluns: Y. Yoshihara, 2008 IEEE Asian Solid-State Circuits Conference sub- $\lambda/4$ baluns: H. Park, et al., IEEE JSSC, Oct. 2014

Invariance of PAE vs. added power

Given the correct source and load impedances, all (lossless) power amplifier circuits have the same maximum efficiency vs. added power curve.

Things that don't change PAE:

Source/emitter inductance in common-source/emitter

Base/gate capacitance in common base/gate.

Capacitive neutralization

Singhakowinta's unconditionally stable positive feedback.

Design goal: amplifier PAE close to transistor PAE minimize tuning and power combining losses

 $(V_1, V_2, I_1, I_2, H_{ij}) \rightarrow (V_3, V_4, I_3, I_4, Z'_{L,opt}, P_{in}, Z_{in})$

Transistor stacking. Why ? Why not ?

Sub- $\lambda/4$ Balun Combiners. Why ? Why not ?

	Lower frequencies	Higher frequencies
Corporate combining	length $\propto 1/f \rightarrow$ large die area X dB loss $\propto 1/\sqrt{f} \rightarrow$ high loss X	length $\propto 1/f \rightarrow$ small die area \checkmark dB loss $\propto 1/\sqrt{f} \rightarrow$ low loss \checkmark
Sub-λ/4 Balun	more transistor fingers per cell $ ightarrow$ ok \checkmark	more transistor fingers per cell→ parasitics X impedance shift of transistor-balun interconnect X

Cascade Combining: Why ? Why not ?

class notes, M. Rodwell, copyrighted 2012-2024 PAs with corporate & cascade combining

Teledyne 250nm InP HBT technology

Ahmed et al., 2020 IMS, 2020 EuMIC, 2021 IMS, 2021 RFIC

140GHz, 20.5dBm, 20.8% PAE

130GHz, 200mW, 17.8% PAE

266GHz, 16.8dBm, 4.0% PAE

Current density, finger pitch limit cell output power

Electrode *RC* charging time \propto (finger length)² Maximum finger length $\propto 1/\sqrt{\text{frequency}}$ Current per finger $\propto 1/\sqrt{\text{frequency}}$

Maximum cell width $\propto 1/$ frequency Maximum number fingers $\propto 1/$ frequency Maximum current per cell $\propto 1/$ frequency^{3/2}

Maximum RF power per cell \propto (maximum load resistance) \cdot (maximum current)² $\propto 1/($ frequency)³

Compare to Johnson F.O.M.: maximum power per cell \propto (maximum voltage)²/(minimum load resistance) $\propto 1/(\text{frequency})^2$

Current density, finger pitch limit cell output power

50 Ω GaN PA cell @ 140GHz (1.6W) 25V swing, 1.67mA/µm, gates: 30 µm width, 15 µm pitch

4V swing, 3.3mA/μm, emitters: 6 μm length, 6 μm pitch

High $V_{\rm br}$, low $I_{\rm max}$? Device sized to drive 50 Ω might approach $\lambda_{\rm g}/4$ width. Small finger pitch is critical; limited by thermal design

