Design of a 32.7-GHz Bandwidth AGC Amplifier IC with Wide Dynamic Range Implemented in SiGe HBT

Kenichi Ohhata, Toru Masuda, Eiji Ohue, and Katsuyoshi Washio

Abstract—A wide-bandwidth automatic gain control (AGC) amplifier IC was developed using a self-aligned selective-epitaxial SiGe heterojunction bipolar transistor (HBT). A transimpedance load circuit was used, and its damping factor was optimized to achieve a wide bandwidth of 32.7 GHz. Capacitor peaking was introduced to the second variable-gain amplifier in order to obtain a wide gain dynamic range of 19 dB. The amplifier IC has a noise figure of 18 dB and an eye pattern at 25 Gb/s.

Index Terms—Automatic gain control (AGC) amplifier, optical transmission system, SiGe heterojunction bipolar transistor (HBT).

I. INTRODUCTION

The recent popularity of the Internet and multimedia communications has greatly increased the demand for high-speed communication systems. Optical transmission systems operating at 10 Gb/s have been developed for large capacity networks to meet this demand, and a transmission system as fast as 40 Gb/s is just now being developed. Several component IC's for a 40-Gb/s system have been reported, which use various high-speed devices such as Si bipolar transistors [1], heterojunction bipolar transistors (HBT's) based on SiGe [2]–[5] and InP/InGaAs [6], GaAs MESFET's [7], and high electron mobility transistors (HEMT's) [8]. SiGe HBT is one of the most promising of these devices because it is inexpensive and highly reliable.

Automatic gain control (AGC) amplifier IC's are key components in optical-fiber transmission systems. Both wide bandwidth and wide dynamic range are indispensable for an AGC amplifier IC. A packaged AGC amplifier with a bandwidth of 26 GHz and a dynamic range of 6 dB, developed using AlGaAs/GaAs HBT's with a cutoff frequency of 76 GHz, has been reported [9]; however, both its bandwidth and dynamic range were insufficient for the 40-Gb/s system. In general, the minimum bandwidth needed in a bit rate is about 3/4 [10]; therefore, a bandwidth of more than 30 GHz is required in a 40-Gb/s system. We recently reported on a Si-based AGC amplifier having a wide bandwidth of 32.7 GHz and a dynamic range of 19 dB [3], which uses self-aligned selective-epitaxial SiGe HBT's [2].

II. SiGe HBT TECHNOLOGY

Fig. 1 shows a schematic cross section of a self-aligned selective-epitaxial SiGe HBT with SMI electrodes. A 0.54-μm-wide SiGe-base and Si-cap multilayer, self-aligned to a 0.14-μm-wide emitter, was selectively grown by using an ultrahigh vacuum (UHV)/chemical vapor deposition (CVD) system. This self-aligned structure is very effective for reducing collector capacitance. To obtain high-speed characteristics, we used a 20-nm-thick 1×10^{19} cm$^{-3}$ boron-doped selective-epitaxial Si$_{1-x}$Ge$_x$ layer with a 10-nm-thick two-step-ramped Ge profile (from 0 to 10% over 5 nm and from 10 to 15% over 5 nm) to form the intrinsic base, which was as shallow as 30 nm. A low thermal cycle process also resulted in a shallow emitter junction depth of 20 nm. To reduce the parasitic resistance of the base, emitter, and collector, tungsten...
TABLE I
TRANSISTOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F</td>
<td>$0.14 \times 1.5 \mu m^2$</td>
</tr>
<tr>
<td>r_{BE}</td>
<td>210 Ω</td>
</tr>
<tr>
<td>C_{TC}</td>
<td>2.9 fF</td>
</tr>
<tr>
<td>C_{TS}</td>
<td>3.6 fF</td>
</tr>
<tr>
<td>f_T</td>
<td>92 GHz ($V_{CE} = 2$ V)</td>
</tr>
<tr>
<td>f_{max}</td>
<td>108 GHz</td>
</tr>
</tbody>
</table>

film was selectively stacked, in a self-aligned manner, on in situ boron-doped poly-Si (IBDP) as the base electrode and on in situ phosphorous-doped poly-Si (IPDP) as the emitter and collector electrodes. Moreover, a 2-μm-wide borophosphosilicate-glass-refilled trench was introduced to reduce the substrate capacitance.

The transistor characteristics are listed in Table I. The transistors with an emitter area of $0.14 \times 1.5 \mu m^2$ had a cutoff frequency of 92 GHz and a maximum oscillation frequency of 108 GHz. The low collector capacitance of 3.6 fF is attributed to the fully self-aligned SiGe base structure, while the low substrate capacitance of 0.6 fF is attributed to the wide SiO$_2$-refilled trench. The base resistance of 210 Ω is attributed to the stacked tungsten/IBDP base electrode.

III. CIRCUIT DESIGN

A schematic of the AGC amplifier core is shown in Fig. 2. The AGC amplifier is composed of an input buffer, two variable-gain stages (A1 and A2), a constant-gain stage (A3), and an output buffer. The differential gain of each amplifier circuit stage is 8, 8, and 9 dB, respectively. Six dB is lost at the impedance-matching resistor in the output buffer, and another 6 dB is lost because of the single-ended output mode. The input and output buffers each contain two-stage emitter followers. The variable-gain stages consist of a Gilbert multiplier, whose load circuit is composed of a transimpedance circuit [11]–[13]. The transimpedance circuit is used because its low input impedance suppresses the Miller effect of the Q_7-Q_{10} in the second variable-gain stage and because the bandwidth can be improved by peaking since the transfer function of transimpedance circuit can have two complex conjugate poles.

The signal is applied to the lower transistor pair (Q_1 and Q_2), and the gain-control signal (V_{cnt1}) is input to the upper transistor pairs (Q_3–Q_5) in the first gain-control stage. The connections of the signal and gain-control signal (V_{cnt2}) are exchanged in the second gain-control stage because the two gain-control stages (A1 and A2) have opposite frequency-response dependencies on the gain, so the gain dependence of the frequency response can be compensated by optimizing the peaking capacitance C_T in the second gain-control stage [12]. In this circuit, the keys to achieving both a wide bandwidth and a wide dynamic range are the design of the transimpedance circuit, which is used as a load circuit of the Gilbert multiplier, and the peaking capacitance C_T.

The transimpedance circuit is composed of a common emitter amplifier (Q_A and R_L) and a feedback circuit (Q_F and R_F). The transimpedance gain Z_T of this circuit is approximately expressed as

$$Z_T \approx \frac{-R_F}{1 + \left(\frac{2K}{\omega_0}\right) \frac{\omega_0^2}{\omega_0^2}}$$

$$\omega_0 \approx \sqrt{\frac{|a_{00}|}{R_F r_f (C_p + C_M)^2}}$$

$$K \approx \frac{1}{2} \sqrt{\frac{R_F}{r_f |a_{00}|}}$$

where a_{00} is an open-loop gain of the common emitter amplifier and r_f, r_p, C_p, and C_M are the input resistance, base resistance, sum of diffusion capacitance and base-emitter junction capacitance, and Miller capacitance of Q_A, respectively. The derivation of this equation is given in Appendix I. K is a damping factor, and the Z_T peaks when $K < 1/\sqrt{2}$. The bandwidth of the transimpedance circuit is dominated by ω_0. Thus, r_f, C_p, and C_M should be made small to obtain a wide bandwidth. The large emitter size of transistor Q_A reduces the r_f; however, this makes the C_M large. Therefore, the emitter size of transistor Q_A should be optimized carefully. Moreover, a large a_{00} also allows a wide bandwidth; however, this makes K small, resulting in a large peak in the frequency response.

The relationship between the bandwidth (ω_{3dB}), peak height, and K is calculated by using (1) and is shown in Fig. 3. The bandwidth improves as K decreases due to the peaking effect; however, this improvement is small, and the peak height increases rapidly when K becomes less than 0.4. Fig. 4 shows the calculated 40-Gb/s eye pattern of the transimpedance circuit when K is 0.5 and 0.25. Here, K is changed by...
The bandwidth and peak height dependence on damping factor K is shown in Fig. 3. The relationship between eye pattern and damping factor K is shown in Fig. 4. The open-loop gain α_{LO} is controlled by the feedback loop. The circuit simulator should be used to precisely control the damping factor. To obtain accurate results, the delay element concerned with the feedback loop (the excess phase of Q_A and Q_F, interconnection delay in the transimpedance stage, etc.) should be carefully estimated. The bandwidth of the first variable-gain amplifier decreases as the gain decreases. To compensate the bandwidth dependence on the gain in the first variable-gain amplifier, the peaking capacitor C_P is introduced in the second variable-gain amplifier. The transconductance gain (G_L and G_R) of the two amplifiers (A_{GL} and A_{GR} in Fig. 2) is expressed as

$$G_L = \frac{G_{LO}}{1 + \frac{p_{LO}}{g_{mL}R_{tL}}}$$

$$G_R = \frac{g_{mL}}{1 + g_{mL}R_{tL}}$$

The current gain G_i of the gain-control circuit (Q_3–Q_6 in Fig. 2) is expressed as

$$G_i(s) = \frac{G_{i0}}{1 + s\tau F}$$

where g_{m3} and g_{m4} are the transconductance, τF is the base transit time, and τ_b is the base resistance of transistors Q_3 and Q_4. The bandwidth of G_i is expressed as

$$\omega_{BW}_{Gi} = \frac{1}{\tau F} \sqrt{\frac{(1 + \alpha^2) + 4\alpha^2 - (1 + \alpha^2)}{2\alpha^2}}.$$
Fig. 7. Frequency response of (a) normalized gain and (b) phase of G_L and G_R.

and

$$G_R = \frac{-G_{RO}(1 - \frac{s}{z_{RO}})}{1 + s(\frac{2K_G}{\omega_{OG}}) + \frac{s^2}{\omega_{OG}^2}}$$

$$G_{RO} = \frac{g_{mR}}{1 + g_{mR}r_{ER}}$$

$$z_{RO} = -\frac{1}{2r_{ER}C_P}$$

$$\omega_{OG} = \sqrt{\frac{1 + g_{mR}r_{ER}}{2g_{mR}r_{ER}C_{\pi R}C_P}}$$

$$K_G = \frac{2g_{mR}r_{ER} + g_{mR}C_{\pi R}}{2\sqrt{2g_{mR}r_{ER}C_{\pi R}C_P(1 + g_{mR}r_{ER})}}$$

(5)

where $g_{mL(R)}$, $r_{mL(R)}$, and $C_{\pi L(R)}$ are transconductance, base resistance, and the sum of diffusion capacitance and base-emitter junction capacitance of Q_7 and Q_8, (Q_9 and Q_{10}).

The derivation of these equations is given in Appendix III.

Fig. 7 shows the normalized gain and phase of G_L and G_R calculated by using (4) and (5), when I_C (Q_{11}) = 1.8 and I_C (Q_{22}) = 1.2 mA. A peak is generated in the gain of G_R due to the zero ω_0 concerning the peaking capacitor C_P. At first sight, the bandwidth of total gain ($G_L + G_R$) seems to decrease due to this peak because G_R has an opposite phase to G_L due to the inverted input signal, so the peak of G_R decreases the total gain at high frequency. However, the bandwidth increases as shown in Fig. 7(a) when the C_P is introduced. This is because the phase of G_R is not opposite to G_L by the influence of ω_0, as shown in the Fig. 7(b). The phase difference between G_R and G_L decreases and has a minimum value of 155° at 40 GHz when C_P is 30 fF. This improves the bandwidth of the total gain from 30 to 70 GHz. Thereby, these two amplifiers (A_{CL} and A_{CR}) do not limit the bandwidth of the whole AGC amplifier.

Fig. 8 shows the simulated bandwidth and peak height dependence on a C_P. It is shown that a large C_P improves the bandwidth in the small gain range. The bandwidth from -8 to 14 dB is almost constant when C_P is 60 fF; however, the peak height in the frequency response becomes 3 dB. A C_P of 30 fF was chosen to suppress the excessive peaking.

A metal-insulator-metal (MIM) capacitor was used for the peaking capacitors to reduce the parasitic resistance. A 75-nm-thick TEOS film, deposited by plasma CVD, was used as an insulator, and 0.5 fF/μm² was obtained.

IV. EXPERIMENTAL RESULTS

Fig. 9 shows a photomicrograph of the fabricated AGC amplifier core. The circuit elements composing the amplifier core were arranged symmetrically to minimize the offset. MIM shunt capacitors of 72 pF, which were connected between a supply voltage V_{EE} and the ground, were located above and below the amplifier core. The power dissipation was 725 mW at V_{EE} of -7.5 V on a chip with a size of 0.95 \times 1.08 mm². The gain, noise figure, and output eye pattern were measured using an on-wafer radio-frequency probe.

The measured gain versus frequency characteristics are shown in Fig. 10. A bandwidth of 32.7 GHz was achieved at a maximum gain of 13 dB, and it was 31.6 GHz at the minimum gain of -6 dB. The input voltage range was 90–800
mVpp. Small fluctuation in the bandwidth was attributed to careful optimization of the peaking capacitor. The measured peak height was larger than the simulation value, as shown in Fig. 8. This is because the base resistance was larger than the design value, resulting in a small K.

Fig. 11 shows the noise figure (NF) versus frequency characteristics. The noise power of the AGC amplifier is very small; therefore, the output noise was amplified by a low-noise, wide-bandwidth amplifier (HP83051A), and the noise power was measured by a spectrum analyzer (HP8565E). The noise power of the low-noise, wide-bandwidth amplifier was subtracted from the measured noise power. An NF of about 18 dB below 30 GHz was achieved, and in the range above 30 GHz the NF rapidly increased because the gain decreased quickly beyond the bandwidth. The average NF up to the bandwidth was 18 dB.

Fig. 12 shows the output eye pattern at 20 and 25 Gb/s. A 12.5-Gb/s pulse-pattern generator and a 2:1 multiplexer were used to generate an input pulse of $2^{25}-1$ pseudorandom bitstream. The eye patterns were measured in single end. The voltage swing of the input pulse was 90 mVpp, and the gain was set to the maximum gain. A well-opened eye pattern was obtained at 20 Gb/s [Fig. 12(a)]; however, the eye pattern at 25 Gb/s [Fig. 12(c)] was not good enough. This is because the output waveform of the 2:1 multiplexer (the specification of maximum operating rate was 20 Gb/s) was not good, as shown in Fig. 12(b).

V. CONCLUSION

A wide-bandwidth AGC amplifier IC was developed using a high-performance SiGe HBT and a circuit design with peaking technique. A transimpedance load circuit was used, and its damping factor was optimized to achieve a wide bandwidth of 32.7 GHz. Capacitor peaking was introduced to the second variable-gain amplifier in order to obtain low-bandwidth variation. A gain dynamic range of 19 dB, a noise figure of 18 dB, and an eye pattern at 25 Gb/s were also achieved.

APPENDIX I

DERIVATION OF (1)

Fig. 13 shows the schematic of the transimpedance load circuit and its equivalent circuit. The common emitter amplifier A_T is composed of Q_A, Q_F, and R_L. The following equations
are obtained from the equivalent circuit:

\[
\begin{align*}
\frac{v_o}{v_{\text{in}}} &= \frac{v_i - v_o}{R_F + Z_0} \quad (A.1) \\
v_o &= v_i - \frac{R_F}{R_F + Z_0}(v_i - a_v v_o)
\end{align*}
\]

where \(Z_i\) and \(Z_o\) are the input and output impedance of \(A_T\), respectively, and \(a_v\) is the voltage gain of \(A_T\). The output impedance of \(A_T\) is much smaller than \(R_F\) because an emitter follower is used as an output buffer. Approximating \(Z_o \ll R_F\), the transimpedance \(Z_T\) is obtained from (A.1) as

\[Z_T = \frac{v_o}{v_{\text{in}}} \approx \frac{a_v Z_o R_F}{R_F + Z_i (1 - a_v)}. \quad (A.2)\]

\(Z_i\) and \(a_v\) are obtained by using Miller capacitance approximation

\[Z_i(s) \approx \frac{r_\pi}{1 + s r_\pi (C_\pi + C_M)} \quad (A.3)\]

\[a_v(s) \approx \frac{a_v (1 + s R_L C_L (1 + s r_\pi (C_\pi + C_M))}{(1 + s R_L C_L (1 + s r_\pi (C_\pi + C_M))}} \quad (A.4)\]

where \(r_\pi\), \(r_\pi\), \(C_\pi\), and \(C_M\) are the input resistance, base resistance, sum of diffusion capacitance and base-emitter junction capacitance, and Miller capacitance of \(Q_A\), respectively. \(a_v\) is an open-loop gain, and \(C_L\) is the parasitic capacitance at the collector of \(Q_A\) that contains the output load seeing from the base of \(Q_F\). Here, the bandwidth of the emitter follower \((Q_F)\) is much wider than the common emitter amplifier \((Q_A\) and \(R_L\)); thus, a pole concerning with the emitter follower is neglected. The time constant at the collector \((R_L C_L)\) is smaller than the time constant at the base \((r_\pi (C_\pi + C_M))\); thus, (A.4) is reduced to

\[a_v(s) \approx \frac{a_v}{1 + s r_\pi (C_\pi + C_M)} \quad (A.5)\]

Rearranging (A.2) by substituting (A.3) and (A.5) into it, the transimpedance is obtained as

\[Z_T \approx \frac{a_v r_\pi R_F}{1 + \left(\frac{2K}{\omega_0} + \frac{s^2}{\omega_0^2}\right) + \frac{s^2}{\omega_0^2} + \frac{s^2}{\omega_0^2}} \approx \frac{-R_F}{1 + \left(\frac{2K}{\omega_0} + \frac{s^2}{\omega_0^2}\right) + \frac{s^2}{\omega_0^2}}\]

\[\omega_0 = \sqrt{\frac{R_F - a_v r_\pi}{R_F r_\pi r_\pi (C_\pi + C_M)^2}} \approx \sqrt{\frac{|a_v|}{R_F r_\pi r_\pi (C_\pi + C_M)^2}} \quad (A.6)\]

\[K = \frac{1}{2} \sqrt{\frac{R_F}{R_F - a_v r_\pi}} \frac{(r_\pi + r_b) \sqrt{r_\pi r_b}}{r_\pi r_b} \approx \frac{1}{2} \sqrt{\frac{R_F}{r_\pi |a_v|}} \quad (A.7)\]

where approximation of \(R_F \ll a_v r_\pi\) and \(r_b \ll r_\pi\) is used.

\[G_i(s) = \frac{i_3 + i_5}{i_1} \approx \frac{g_{m3} + g_m4}{g_{m3} (1 + s r_\pi C_\pi) + g_{m4} (1 + s r_\pi C_\pi)} \quad (A.8)\]
The transconductance gain of another amplifier \(A_{GL} \) is obtained by substituting \(C_P = 0 \) to (A.12)
\[
G_L = \frac{G_{L0}}{1 - \frac{1}{P_{L0}}} = \frac{g_m L}{1 + g_m L R_{EL}} \quad \text{(A.13)}
\]

ACKNOWLEDGMENT

The authors would like to thank K. Oda, R. Hayami, M. Tanabe, H. Shimamoto, and Dr. M. Kondo for their valuable discussions.

REFERENCES

Kenichi Ohhata was born in Yamaguchi, Japan, on March 30, 1961. He received the B.S. degree in physics from Nagoya University, Nagoya, Japan, in 1983.

In 1983, he joined the Hitachi Device Engineering Co., Ltd., Chiba, Japan. Since then, he has been engaged in the research and development of high-speed bipolar and BiCMOS SRAM’s. Recently, he has been concerned with the research and development of MMIC’s for optical-fiber transmission systems.

Mr. Ohhata is a member of the Institute of Electronics, Information, and Communication Engineers of Japan.

Toru Masuda was born in Saitama, Japan, on December 9, 1967. He received the B.S. and M.S. degrees in electronic engineering from Science University of Tokyo, Tokyo, Japan, in 1990 and 1992, respectively.

In 1992, he joined the Central Research Laboratory, Hitachi, Ltd., Tokyo. Since then, he has been engaged in research and development of high-speed memories for mainframe computers and analog IC’s for communication use. His current interest is in high-speed IC’s for optical transmission systems.

Mr. Masuda is a member of the Institute of Electronics, Information, and Communication Engineers of Japan.

Eiji Ohue was born in Hokkaido, Japan, on January 6, 1965. He received the M.S. degree from Hokkaido University, Japan, in 1991.

He joined the Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan, in 1991, where he has been engaged in research and development on Si bipolar transistors.

Katsuyoshi Washio was born in Hyogo, Japan, on July 22, 1956. He received the B.S. and M.S. degrees in electrical engineering from Kobe University, Kobe, Japan, in 1979 and 1981, respectively, and the Ph.D. degree from Waseda University, Tokyo, Japan, in 1991.

In 1981, he joined the Central Research Laboratory, Hitachi, Ltd., Tokyo, where he has been engaged in research and development on design and characterization of Si bipolar process technologies, devices, and circuits for both mixed analog/digital LSI’s and high-speed LSI’s. He is currently responsible for high-speed Si bipolar process, device, and circuit technologies as a Senior Researcher at the Electron Devices Research Department. During 1992–1993, he was a Visiting Researcher at Corporate Research and Development, Siemens AG, Munich, Germany.

Dr. Washio is a member of the Institute of Electronics, Information, and Communication Engineers of Japan.