ECE ECE145C (undergrad) and ECE218c (graduate)

Mid-Term Exam. Nov 13, 2003

Do not open exam until instructed to.

Open book

Use any and all reasonable approximations (5% accuracy is fine.), *AFTER STATING THEM.*

Name: ______________________
Problem 1, 50 points

You will be using the device model below:

\[C_{be} = C_{be,depl} + g_m \tau_f \cdot C_{je} = 14 \text{ fF}, \]
\[\beta = \infty, C_{cbi} = 2.2 \text{ fF}, C_{cb\text{,total}} = 4.3 \text{ fF}, \]
\[R_{bb} = 21 \text{ Ohms}, R_{ex} = 4 \text{ Ohms}, \text{ and } \tau_f = 0.44 \text{ ps}. \]
This transistor model has 2.5 \text{ um}^2 emitter area.

The transistors have a \(V_{be} = 0.9 \) Volts when operating at 2.0 mA/\text{um}^2.

You will be working on the circuit below. Please note that because the exam is open-book, the circuit is by necessity somewhat unusual.

The circuit diagram is 100\% mirror-symmetric.
All transistors are 2.5 \text{ um}^2 emitter area.
\(I_1 = I_2 = I_3 = 5 \text{ mA}, R_L = 200 \text{ Ohms}, R_f = R_{\text{gen}} = 50 \text{ Ohms}. \) \text{Vindc} = 500 mV (e.g. the inputs are at -500 mVdc).
Part a, 5 points

DC bias.

Draw all DC node voltages and branch currents directly on the circuit diagram.
Part b, 15 points

Midband gains

Find the mid-band gain $V_{out}/V_{in} =$___________________

In order to receive partial credit, it is essential to show appropriate work and small-signal equivalent circuit diagrams.
Part c, 5 points
device models

Please enter the device parameter values below.

<table>
<thead>
<tr>
<th>transistor</th>
<th>Rbe</th>
<th>Rbb</th>
<th>Rex</th>
<th>Cbe</th>
<th>Ccbi</th>
<th>gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part d, 25 points

high frequency analysis

Find the first-order time constants of the circuit:

- First order time constant due to C_{cbx} of $Q1a$ = ________________
- First order time constant due to C_{cbi} of $Q1a$ = ________________
- First order time constant due to C_{be} of $Q1a$ = ________________

- First order time constant due to C_{cbx} of $Q2a$ = ________________
- First order time constant due to C_{cbi} of $Q2a$ = ________________
- First order time constant due to C_{be} of $Q2a$ = ________________

Total first order time constant = ________________

There are too many 2nd-order time constants to calculate them all; please find only one:

- Second order time constant due to C_{be} of $Q1a$ and C_{be} of $Q2a$ = ________________

Please show all your work clearly below
Problem 2, 50 points

You will be using the device model below:

\[C_{be} = C_{be,depl} + g_m \tau_f. \]
\[C_{je} = 14 \text{ fF, } \]
\[\beta = \infty, \ C_{cibi} = 4.3 \text{ fF, } C_{cbx} = 0 \text{ fF, } R_{bb} = 0 \text{ Ohms, } R_{ex} = 0 \text{ Ohms, } \text{ and } \tau_f = 0.44 \text{ ps. } \]
This transistor model has 2.5 um^2 emitter area.

The transistors have a V_{be} = 0.9 Volts when operating at 2.0 mA/um^2.

You will be working on the circuit below. Please note that because the exam is open-book, the circuit is by necessity somewhat unusual. This problem most definitely requires thinking, rather than "plug and grind".

The circuit diagram is 100% mirror-symmetric.
All transistors are 2.5 um^2 emitter area
I1=I2=I3=5 mA, R_L=200 Ohms, R_f=R_{gen}=50 Ohms. \(V_{indc} = 500 \text{ mV (e.g. the inputs are at } -500 \text{ mVdc).} \)
Q1a/b and Q3a/b have zero base-emitter and base-collector capacitance
Part a, 5 points

DC bias.

Draw all DC node voltages and branch currents directly on the circuit diagram.
Part b, 5 points

Circuit representations

First draw a half-circuit equivalent circuit model of the amplifier, representing the transistors with transistor symbols. Then draw a second half-circuit equivalent circuit model of the amplifier, representing the transistors with hybrid pi models.
Part c, 15 points

Midband gains (NOT EASY!)

Using nodal analysis (or other methods you prefer), find the mid-band gain V_{out}/V_{in}. Please note that the feedback effect of R_f has a major effect and cannot be ignored.
Part d, 5 points

device models

Please enter the device parameter values below.

<table>
<thead>
<tr>
<th>transistor</th>
<th>Cbe</th>
<th>Ccbi</th>
<th>gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part e, 20 points

high frequency analysis

Now find the first-order and second order time constants of the circuit. This is quite difficult, and will require clear understanding of the definitions of R_{11}^0, etc. Defining Cbe of Q2a as C_1 and Ccb of Q2a as C_2, Find R_{11}^0, R_{22}^0, R_{22}^1. Show all of your work clearly.