Mixed-Signal IC Design Notes set 1:
Quick Summary of Device Models

Mark Rodwell
University of California, Santa Barbara

rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax
This material was covered in ECE145A
Quickly review key information.
 Transistor models
 Interconnect models
 2 - port parameters

If greater detail is required, please refer to the ECE145a online notes.
Transmission Lines
Transmission Lines for On-Wafer Wiring

microstrip line

- **geometry**
- **voltages**
- **currents**

characteristic impedance: \(Z_o \approx \frac{\eta_0}{\sqrt{\varepsilon_r}} \frac{H}{H + W} \)

where \(\eta_0 \approx 377 \Omega \) and

propagation velocity: \(v = \frac{c}{\sqrt{\varepsilon_r}} \)

where \(c \) is the speed of light.

These are approximate relationships: learn how to use ADS
Transmission Lines: Waves, Voltage, Current

\[V(z, t) = V^+(t - z / v) + V^-(t + z / v) \] forward and reverse wave voltages

\[I(z, t) = \frac{V^+(t - z / v)}{Z_o} - \frac{V^-(t + z / v)}{Z_o} \] forward and reverse wave currents

where

\[Z_o = \sqrt{L / C} \] characteristic impedance

and

\[v = 1 / \sqrt{LC} \] propagation velocity
At end of line:

\[V^- = \Gamma_l V^+ \quad \text{where} \quad \Gamma_l = \frac{(Z_l/Z_o) - 1}{(Z_l/Z_o) + 1} \quad \text{load reflection coefficient} \]

At beginning of line:

\[V^+ = \Gamma_s V^- + T_s V_{\text{gen}} \quad \text{where} \quad \Gamma_s = \frac{(Z_s/Z_o) - 1}{(Z_s/Z_o) + 1} \quad \text{source reflection coefficient} \]

and \[T_s = \frac{Z_o}{Z_o + Z_s} \quad \text{source transmission coefficient} \]
Pulse Reflections on Transmission Lines

\[V_{\text{gen}}(t) = \alpha * \delta(t) \]

\[\Gamma_s \]

\[T_s \]

\[\tau_1 = \frac{l_1}{v} \]

\[\tau_2 = \frac{l_2}{v} \]

\[R_L \]

\[V_a \]

\[V_b \]

\[V_c \]

\[\alpha T \Gamma \delta(t) \]

\[\alpha T \Gamma \Gamma \delta(t) \]

\[\alpha T \Gamma \Gamma \Gamma \delta(t) \]

\[\alpha T \Gamma \Gamma \Gamma \Gamma \delta(t) \]

\[\text{time} \]

\[\text{time} \]

\[\text{time} \]
Relating Lumped and Distributed Circuits

\[L = Z_0 \tau , \quad C = \frac{\tau}{Z_0} \]

Approximate model

\[\frac{L}{(R_L + R_s)} \ll \left(R_L \parallel R_s \right) C \]

→ neglect inductor
RC circuit → charging.
Short Transmission Lines Can Be Modeled as L's and C's

\[L = Z_0 \tau, \quad C = \frac{\tau}{Z_0} \]

High - \(Z_0 \) line:
large \(L \), small \(C \).
\(\rightarrow \) approximately an inductor

Low - \(Z_0 \) line:
large \(C \), small \(L \).
\(\rightarrow \) approximately a capacitor.
Skin effect loss

Current penetrates the conductor by one skin depth
\[\delta = \sqrt{\frac{\omega \mu \sigma}{2}} \]
where \(\sigma \) is the conductivity.

Line has added series resistance per unit length
\[Z_{surface} = \frac{1}{P} \frac{(1 + j)}{\delta \sigma} \], where \(P \) is the effective current-carrying periphery.
package resonance and grounding
What is Ground Bounce?

"Ground" simply means a reference potential shared between many circuit paths.

To the extent that it has nonzero impedance, circuits will couple in unexpected ways.

RFI, resonance, oscillation, frequently result from poor ground systems.
Ground Bounce on an IC: break in a ground plane

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.
Ground Bounce: IC Packaging with Top-Surface-Only Ground

Peripheral grounding allows parallel plate mode resonance, die dimensions must be <0.4mm at 100GHz

Bond wire inductance aggravates the effect: resonates with through-wafer capacitance at 5-20 GHz
power-supply resonance
Power Supply Resonance

Resonates at \[f = \frac{1}{2\pi} \sqrt{L_{\text{bond}} C_{\text{on}}} \]
gain peak / suckout, oscillation, etc.

Active (AC) supply regulation

Passive filter synthesis

\[R = \sqrt{\frac{L_1}{C_1}} \]

\[\sqrt{\frac{L_1}{C_1}} = \sqrt{\frac{L_2}{C_2}} = \cdots \]
supply impedance is \(R \) at all frequencies
Power Supply Resonances; Power Supply Damping

90 GHz—local resonance between power supply capacitance and supply lead inductance

~N*5GHz resonances—global standing wave on power supply bus

Power supply is certain to resonate: we must model, simulate, and add damping during design.
Standard cell showing power buses
Interconnects: Summary, Design Strategy
IC Interconnects -- Thin-Film Microstrip

- narrow line spacing → IC density
- no substrate radiation, no substrate losses
- fewer breaks in ground plane than CPW
- ... but ground breaks at device placements
- still have problem with package grounding
- ...need to flip-chip bond

thin dielectrics → narrow lines → high line losses → low current capability → no high-Z_0 lines

$$Z_0 \sim \frac{\eta_0}{\varepsilon_r^{1/2}} \left(\frac{H}{W + H} \right)$$

InP mm-wave PA (Rockwell)
IC Interconnects -- Inverted Thin-Film Microstrip

- Narrow line spacing → IC density
- Some substrate radiation / substrate losses
- No breaks in ground plane
- ... no ground breaks at device placements
- Still have problem with package grounding
- ... need to flip-chip bond
- Thin dielectrics → narrow lines
 → High line losses
 → Low current capability
 → No high-Z_o lines

InP 150 GHz master-slave latch
InP 8 GHz clock rate delta-sigma ADC
VLSI Interconnects with Ground Integrity & Controlled Z_0

- narrow line spacing \rightarrow IC density
- no substrate radiation, no substrate losses
- negligible breaks in ground plane
- negligible ground breaks @ device placement
- still have problem with package grounding
 ...need to flip-chip bond
- thin dielectrics \rightarrow narrow lines
 \rightarrow high line losses
 \rightarrow low current capability
 \rightarrow no high-Z_0 lines
No clean ground return? → interconnects can't be modeled!

35 GHz static divider
interconnects have no clear local ground return
interconnect inductance is non-local
interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC
thin-film microstrip wiring
every interconnect can be modeled as microstrip
some interconnects are terminated in their Z_0
some interconnects are not terminated
...but ALL are precisely modeled
Active Devices: Bipolar Transistors
HBT Physical Structure
Physical structure, symbolic

Device Stripe Length $= L_E$
perpendicular to drawing
Bipolar Transistor: DC characteristics: common-emitter

HBTs have a maximum operating current density J_{max}. This is set by: Kirk effect, Maximum power density.

More information in design project documentation.
HBT hybrid-Pi equivalent-circuit model

\[g_m = g_{mo} \exp(-j\omega\tau_c) \]
\[\tilde{g}_{mo} = \frac{qI_c}{nkT} \]
\[R_{be} = \beta / g_{mo} \]
\[\tau_f = \tau_b + \tau_c \]

Given \(N_{finger} \) HBT fingers of emitter length \(L_E \):

\((C_{je}, C_{cbi}, C_{cbx}) \) vary in proportion to \(N_{finger} L_E \),

\((R_{bb}, R_{ex}, R_c, I_{c,max}) \) vary in proportion to \(1 / N_{finger} L_E \).
Active Devices:
MOSFETs
MOSFETS

Cross-Section

- Gate metal (silicide)
- Dielectric sidewall
- Gate oxide
- N+ poly gate
- P substrate
- Source contact (silicide)
- Drain contact (silicide)
- N+ source
- N+ drain

Layout (multi-finger)

- Gate
- Dielectric
- N+ polysilicon gate
- Inversion layer
- P substrate
- S
- D
- Wg
- G
- S D S D S D S
MOSFET DC Characteristics

For drain voltages larger than the knee voltage:

mobility–limited current

\[I_{D,\mu} = \mu c_{ox} W_g (V_{gs} - V_{th})^2 / 2L_g \]

velocity–limited current

\[I_{D,v} = c_{ox} W_g v_{sat} (V_{gs} - V_{th}) \]

Generalized Expression

\[\left(\frac{I_D}{I_{D,\mu}} \right)^2 + \left(\frac{I_D}{I_{D,v}} \right) = 1 \]
Knee Voltage: Mobility-Limited Case

The knee voltage defines the boundary between the Ohmic and constant-current regions.

In the mobility-limited regime, the knee in curve occurs when

\[V_{dg} = V_{ds} - V_{gs} = -V_{th} \]

The Knee Voltage is further increased by voltage drops across the parasitic source & drain resistances.
Knee Voltage: Velocity-Limited Case

In the velocity - limited regime, the knee in curve occurs when \(V_{ds} = \frac{v_{sat} L_g}{\mu} \)

Again, the Knee Voltage is further increased by voltage drops across the parasitic source & drain resistances.
MOSFET Transconductance

mobility – limited

\[I_{D,\mu} = \mu c_{ox} W g (V_{gs} - V_{th})^2 / 2 L_g \]

\[\rightarrow g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu c_{ox} W g (V_{gs} - V_{th}) / L_g \]

velocity – limited

\[I_{D,v} = c_{ox} W g v_{sat} (V_{gs} - V_{th}) \]

\[\rightarrow g_m = \frac{\partial I_D}{\partial V_{GS}} = c_{ox} W g v_{sat} \]
Linear vs. Square-Law Characteristics: 90 nm

Sorin Voinigescu, CSICS RF & High Speed CMOS, Nov. 12, 2006
90 nm MOSFET DC Characteristics

N-channel
\[g_m / W_g = c_{ox} V_{sat} = 1.4 \, \text{mS/\mu m} = 1.4 \, \text{S/mm} \]
\[V_{th} = 0.6 \, \text{V} \quad 1/\lambda \sim 3\, \text{V} \]

P-channel
\[g_m / W_g = c_{ox} V_{sat} = 0.7 \, \text{mS/\mu m} = 0.7 \, \text{S/mm} \]
\[|V_{th}| = 0.6 \, \text{V} \quad 1/\lambda \sim 3\, \text{V} \]
Device Structure and Model

\[N \Rightarrow \# \text{gate fingers}, \ W_g = \text{gate width} \]

\[g_m \sim \frac{\mu}{T_{eq}} v_{eff} (NW_g) \text{or} \frac{\mu}{T_{eq}} \mu (NW_g) (V_{gs} - V_{th}) \]

\[C_{gs} \sim \frac{\varepsilon}{T_{eq}} L_g (NW_g) \quad R_g \sim \frac{\rho_s}{12L_g} \left(\frac{W_g}{N} \right) + \frac{R_{end}}{2N} \]

\[C_{gd} \propto NW_g \quad R_d \propto 1/NW_g \]

\[G_{ds} \propto NW_g \quad R_s \propto 1/NW_g \]

\[R_i \sim 1/g_m \quad C_{sb} \propto NW_g \]

\[C_{db} \propto NW_g \]

Increase \(f_{\text{max}} \) using:
- short gate fingers
- ample substrate contacts
Oversimplified Model

For rough hand analysis, etc

\[g_{mx} \sim \frac{g_m}{1 + g_m R_s} \]

\[C_{gsx} \sim \frac{C_{gs}}{1 + g_m R_s} \]

\[G_{dsx} \sim \frac{G_{ds}}{1 + g_m R_s} \]

\[R_{in} \sim R_s + R_g + R_i \]

Approximate cutoff frequencies

\[\frac{1}{2 \pi f_c} \sim \frac{C_{gs}}{g_m + C_{gd} / g_m + (R_s + R_d) C_{gd}} \]

\[f_{\text{max}} \sim \frac{f_c}{2 \sqrt{(R_s + R_g + R_i) G_{ds} + 2 \pi R_g C_{gd}}} \]
End