A High-Linearity, LC-Tuned, 24-GHz T/R Switch in 90-nm CMOS
Piljae Park, Dong Hun Shin, John J. Pekarik*, Mark Rodwell and C. Patrick Yue
High-Speed Silicon Lab, University of California, Santa Barbara, CA 93106
*IBM Microelectronics, Essex Junction, VT 05452

ABSTRACT — This paper presents an LC-tuned, 24-GHz single-pole double-throw (SPDT) transmit/receive (T/R) switch implemented in 90-nm CMOS. The design focuses on the techniques to increase the power handling capability in the transmit (Tx) mode under 1.2-V operation. The switch achieves a measured P_{1dB} of 28.7 dBm, which represents the highest linearity, reported to date, for CMOS millimeter-wave T/R switches. The transmit and receive (Rx) branches employ different switch topologies to minimize the power leakage into the Rx path during Tx mode, and hence improve the linearity. To accommodate large signal swing, AC floating bias is applied using large bias resistors to all terminals of the switch devices. Triple-well devices are utilized to effectively float the substrate terminals. The switch uses a single 1.2-V digital control signal for T/R mode selection and for source/drain bias. The measured insertion loss is 3.5 dB and return loss is better than –10 dB at 24 GHz.

Index Terms — CMOS transmit/receive (T/R) switch, triple-well, 1-dB compression point, floating substrate.

I. INTRODUCTION

Recently, a fully integrated 24-GHz multi-channel phased-array transmitter has been reported using 0.13-μm CMOS [1]. The 4-channel, 8-antenna system showcases the high-frequency performance and integration capability offered by advanced CMOS processes. At millimeter-wave (nm-wave) frequencies, multi-input-multi-output (MIMO) system architectures are often adopted to achieve directivity gain to boost transmission range. While the transceiver size can be reduced through integration, the overall system form factor is still dominated by the antenna array size. This limitation is especially problematic at the lower mm-wave frequency band. For the 24-GHz ISM band, the antenna size and spacing between array elements are typically on the order of 1 cm. Therefore, it is advantageous to integrate the T/R switches and as much as feasible the matching networks on chip to reduce the board-level complexity for interfacing to the antennas and hence reduce the overall system size.

Most CMOS T/R switches reported in literature are limited to operations below 20 GHz [2]–[5]. Switch designs at 24 and 60 GHz have been reported but their linearity (P_{1dB}) are limited to less than 5 dBm [6],[7]. In this paper, we present a 24-GHz T/R switch design with a combination of linearity enhancement techniques. The prototype is implemented in IBM’s 90nm CMOS process, which offers 1.2-V NMOS with 120-GHz f_T and 250-GHz f_{max} [8].

II. T/R SWITCH DESIGN

Achieving high linearity is more critical for Tx mode than for Rx because the outgoing transmitted power level can be as high as 20–30 dBm, while the incoming received signal from the antenna is typically less than –40 dBm. Since transmit and receive power handling requirement are quite different, an asymmetric switch design is exploited. Figure 1 shows the schematic of the T/R switch. In the Tx path, a series switch (M_1) is used whereas a shunt switch (M_2) is employed in the Rx path. A 1.2-V digital control signal, V_C, is applied to the gate of the switches to select Tx or Rx mode operation.

Series gate bias resistors, R_{g1} and R_{g2}, are used, so the gate potential is bootstrapped to the source and drain. This essentially floats the gate at AC which is a common practice in T/R switch design to prevent power loss into the gate terminal [2]–[5]. To determine the proper value of R_g, the trade-off between P_{1dB} and the 10%-to-90% turn-on switching time (T_{sw}) is examined for M_1, as shown in Figure 2(a). The W/L of M_1 is 160μm/80nm, which presents a gate capacitance of 180 fF. For R_g less than 5 kΩ, P_{1dB} starts to decrease with R_g. In this T/R switch design, R_g of 30 kΩ is chosen to minimize power loss to the

Figure 1. Schematic of the LC-tuned, SPDT T/R switch.
gate terminal while keeping \(T_{sw} \) less than 10 ns. The proper sizing of \(M_1 \) is determined based on the trade-off of the on-resistance \((R_{on}) \) in the triode region, which affects insertion loss, and \(C_{sd} \) in cut-off region, which affects isolation, as illustrated in Figure 2(b). With the chosen width of 160 \(\mu m \) for \(M_1 \), the \(R_{on} \) is 2.4 \(\Omega \) and the \(C_{sd} \) is 75 \(fF \) according to simulations. The measured insertion loss and isolation will be presented in the next section.

The source and drain voltages \((V_{SD}) \) of \(M_1 \) and \(M_2 \) are biased using the inverted \(V_C \) (\(\overline{V_C} \) in Figure 1) through large bias resistors \((R_{sd1}-R_{sd3}) \). In Tx mode, \(V_C \) is set at 1.2 \(V \), so \(V_{SD} \) of \(M_1 \) and \(M_2 \) is at 0 \(V \). The Rx path presents a parallel resonant tank with \(L_1 \) and \(C_1 \) shorted through \(M_2 \). The large bias resistor \(R_{sd3} \) causes the source terminal of \(M_2 \) to be floating. This keeps the impedance between \(M_2 \)'s source and drain small even under large signal swings at the antenna node. As a result, the Q of the \(L_1C_1 \)-tank remains sufficiently high to effectively block out leakage power from the Tx branch. The \(L_1C_1 \)-tank impedance at 24 GHz is about 700 \(\Omega \). Based on simulation, a 2-dB improvement in the Tx \(P_{1dB} \) is observed with the insertion of \(R_{sd1} \). If a series switch topology is used symmetrically in both Tx and Rx branch \([3]–[5]\), the impedance looking into the Rx branch will be limited by the source-to-drain capacitance (75 \(fF \)) which is much lower than the \(L_1C_1 \)-tank capacitance in our design. Also, large signal swings at the antenna port in Tx mode can potentially turn on the series Rx switch which further limits the power handling capability of the symmetric topology.

In Rx mode, both \(M_1 \) and \(M_2 \) are turned off with \(V_C \) set to 0 \(V \), so \(V_{SD} \) of \(M_1 \) and \(M_2 \) is at 1.2 \(V \). As \(M_2 \) is shut off, \(L_1 \) and \(C_2 \) form a series LC-resonant matching network to the receiver input. With the source terminal of \(M_2 \) floating due to \(R_{sd3} \), the source-to-drain capacitance of \(M_2 \) is bootstrapped. Simulation result confirms that \(R_{sd3} \) improves the IL in Rx mode by 0.3 \(dB \). The drain-to-body junction capacitance of \(M_2 \) is also bootstrapped with the floating body terminal.

While the gate, source, and drain terminals of the switch transistor can be floated at AC using large bias resistors, floating the body terminal is more difficult. Directly floating the P-substrate node can lead to a latch-up hazard. An LC-tuned substrate bias network was proposed to alleviate this problem at the cost of larger chip area due to an additional space separation to substrate contacts and an extra inductor [2]. As TW becomes a standard feature in scaled CMOS processes, using TW NMOS for T/R switch is a more effective implementation choice. Figure 3 shows the cross section of TW NMOS with AC floating bias resistors, \(R_{su} \) and \(R_{sb} \), for P-well and D-nwell, respectively. It is important to float both the P-well and the D-nwell in order to bootstrap both the source/drain/P-well junction and the P-well/D-nwell junction [5]. While the D-nwell/P-sub junction is not bootstrapped (since P-sub is tied to ground directly), the necessary voltage swing to turn on this junction is very high. The substrate impedance of a TW device \((Z_{TW}) \) should be high enough to provide proper substrate isolation, thus less power leakage to the substrate. The \(Z_{TW} \) is capacitive because at least one of junctions between the P-well/D-nwell and D-nwell/P-sub is reverse-biased even in the presence of large signal swings. The size of the TW switch devices dictates the P-well area which directly affects the \(Z_{TW} \). By limiting the P-well area, the \(|Z_{TW}| \) at 24GHz is kept at 650 \(\Omega \), which is more than 10 times greater than the 50-\(\Omega \) termination.

Figure 2. (a) Trade-off between \(P_{1dB} \) and the 10%-to-90% turn-on switching time in Tx mode as a function of series gate bias resistance for \(M_1 \) (160\(\mu m \)/80nm). (b) Trade-off between on-resistance (insertion loss) and source-to-drain capacitance (isolation) as a function of switch device width.

Figure 3. Cross section of triple-well NMOS (\(M_1 \) and \(M_2 \)) with bias resistors to float the gate, P-well and D-nwell at AC.
III. MEASUREMENT RESULTS

In Figure 4(a), the Rx mode IL and isolation of measurement and simulation are plotted up to 50 GHz. The measured IL between Rx and Ant port is 3.5 dB at 24 GHz which is within 0.5 dB of the simulated value. The isolation between Rx and Tx port is 16 dB at 25 GHz. The measured and simulated return loss at the Ant and Rx port, S11 and S22, respectively, are plotted in Figure 4(b). Despite the slight mistuning of the L1-C2 series resonant frequency, the return loss is still better than –10 dB at 24 GHz.

Figure 5(a) shows the comparison for IL and isolation in Tx mode. The measured Tx IL at 24 GHz is 3.4 dB. This is 2 dB worse than the simulated value and can be attributed to the additional loss in the source/drain junction capacitance of M1 and in the series routing interconnect which need to be better modeled. The measured return losses at both the Tx and Ant ports are better than –15 dB at 24 GHz as shown in Figure 5(b). The measured Pout vs. Pin in Tx mode is plotted in Figure 6 from which the P–1dB of 28.7 dBm is extracted. The two main losses in the Tx mode are the on-resistance of M1 (Ron ~ 2.4 Ω) and the power leakage into the Rx path. In the Tx mode, M2 in the Rx path should remain in a low-impedance state (Ron ~ 3.7 Ω) to make the L1C2-tank high impedance. This prevents Tx signal from leaking into the Rx path. However, as the transmit power approaches P–1dB, the instantaneous Vin and Vout fluctuations in M2 increase its effective Ron.

This lowers the L1C2-tank impedance and consequently, power leaks into the Rx path.

Table 1 compares the performance of this work with that of other RF and mm-wave CMOS switches. This work achieves the highest linearity and the smallest chip area among the reported switches to date operating at above 20 GHz. Figure 7 illustrates the layout and chip photo of the switch presented. The switch occupies merely 110x160 µm² of chip area. The TW NMOS devices, M1 (160µm/80nm) and M2 (100µm/80nm), are laid out as multi-finger devices with a 10-µm finger width since the device gate resistance is absorbed as part of Rg.
Table 1. Summary of this work and comparison with reported T/R switch designs.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Key Performance</th>
<th>Technique, Chip area, Control voltage</th>
<th>Technology</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 GHz</td>
<td>28 dBm</td>
<td>IL 1.52 dB (Tx) 1.42 dB (Rx) 30 dB (Tx) 15 dB (Rx)</td>
<td>LC tuned bias, 0.56 mm², Vcont 1.8V</td>
<td>0.18-μm CMOS</td>
</tr>
<tr>
<td>15 GHz</td>
<td>21.5 dBm</td>
<td>IL 1.8 dB (Tx) 17.8 dB</td>
<td>Impedance transform, 0.20 mm², Vcont 1.2V 3V</td>
<td>0.13-μm CMOS</td>
</tr>
<tr>
<td>DC ~ 20GHz</td>
<td>22.6 dBm</td>
<td>IL 2.5 dB (20GHz) 7.5 dB (24GHz) 25 dB</td>
<td>Floating well, 0.058 mm², Vcont 1.8V 3.6V</td>
<td>0.18-μm Triple-well CMOS</td>
</tr>
<tr>
<td>DC ~ 20GHz</td>
<td>27 dBm single-ended</td>
<td>IL 2.0 dB (20GHz)</td>
<td>Floating well, 0.03 mm², Vcont 0V 2V</td>
<td>0.13-μm Triple-well CMOS</td>
</tr>
<tr>
<td>24 GHz</td>
<td>0.5 dBm</td>
<td>Gain 1.9 dB NF 11.3 dB 42 dB</td>
<td>Active switch, 0.55 mm², Vcont 0V 5V, Pdd 120mW</td>
<td>0.5-μm SiGe BiCMOS</td>
</tr>
<tr>
<td>57–66 GHz</td>
<td>4.1 dBm</td>
<td>IL 4.5–5.8 dB 24–26 dB</td>
<td>Impedance transform, 0.22 mm², Vcont 0V 1.2V</td>
<td>0.13-μm CMOS</td>
</tr>
<tr>
<td>24 GHz</td>
<td>28.7 dBm</td>
<td>IL 3.4 dB (Tx) 3.5 dB (Rx) 22 dB (Tx) 16 dB (Rx)</td>
<td>Floating well, 0.018 mm², Vcont 0V 1.2V</td>
<td>90-nm Triple-well CMOS</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

In summary, we have presented the design of a 24-GHz SPDT T/R switch that achieves the highest linearity (28.7dBm of P1dBm) among CMOS switches for mm-wave applications. The switch utilizes a single 1.2-V digital control signal to select Rx/Tx mode and to set the source/drain bias of the switch devices. The design is well suited for integration with multi-channel transceiver to reduce the overall system size and cost.

ACKNOWLEDGEMENT

This work was sponsored by SRC/DARPA FCRP C2S2. The authors would like to thank Munkyo Seo and Corrado Carta for valuable discussions, and Prof. Umesh Mishra and Prof. Bob York of UCSB for help in testing.

REFERENCES