

A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25µm InP DHBT Technology

Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne Scientific Company)

Outline

- Application and Motivation of the work
- TSC 250nm HBT process overview
- Block diagram & schematic of the circuit
- Layout & EM modeling
- Measurement results and comparison table

Motivation - I

Motivation - II

- High speed optoelectronic signal conversion requires broadband receivers
- Limiting amplifiers are the key components in these receivers in order to:
 - Provide a low input sensitivity and sufficient gain to achieve saturated output levels from small-signal inputs which enables <u>reliable decision making</u>
 - Provide a wide bandwidth to achieve short rise and fall times in order to provide an output signal with minimum distortion

TSC 250nm InP HBT process

Modified Cherry-Hooper stage [1-3]

Large signal behavior:

$$V_{o1} - V_{o2} \cong (R_1 + R_2) I_{EE2} \cdot \tanh\left(\frac{V_2 - V_1}{2V_T}\right)$$

Conventional C-H amp. gain ≈ g_{m1-2} R_F Modified C-H amp. provides gain enhancement

by a factor of
$$\left(1 + \frac{R_2}{R_1}\right)$$
 while $0 < \frac{R_2}{R_1} < 2.5$

[1] Y. M. Greshishchev et al., "A 60-dB gain, 55-dB dynamic range, 10-Gb/s broad-band SiGe HBT limiting amplifier," IEEE JSSC, vol.34, no.12, pp. 1914-1920, Dec. 1999.

[2] K. Ohhata et al., "Design of a 32.7-GHz bandwidth AGC amplifier IC with wide dynamic range implemented in SiGe HBT,"

IEEE JSSC, vol.34, no.9, pp. 1290-1297, Sep. 1999

[3] C. D. Holdenried et al., "Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical communications," IEEE JSSC, vol.39, no.11, pp. 1959-1967, Nov. 2004.

Single-ended gain and BW measurements have be chosen due to unavailability of 4-port s-param measurement for frequencies > 67 GHz

 \rightarrow ~6dB gain has been added to get the differential equivalent

Schematic

Compact layout

425 μm

CSICS 2013 Monterey, California

Symmetric layout

EM Simulation

Whole chip has been modeled using ADS momentum EM simulator

S-parameter measurement results - I

Single-ended insertion loss

S₂₁=14.5 dB , 3dB BW = 100 GHz

 S_{21} gain ripple < ± 0.5 dB

Single-ended input and output return loss

Slide 13

• $S_{11} < -20 \text{ dB}$, $S_{22} < -15 \text{ dB}$

E B

 \triangleleft

0.05

Rollet Stability factor

100

80

60

40

20

K factor

K stability factor

S-parameter measurement results - II

Group delay ≈ 9 psec Group delay variation = 11 psec

Group Delay

Eye diagrams @ 30 Gb/s

Eye diagrams @ 40 Gb/s

Comparison table

COMPARISON TO SIMILAR BROADBAND AMPLIFIERS REPORTED IN THE LITERATURE.														
Ref.	Gain _S * (dB)	Gain _D ** (dB)	BW [†] (GHz)	GBW [‡] (GHz)	$\operatorname{IRL}^{\perp}$ (dB)	ORL^{\top} (dB)	GR [◊] (dB)	GD [§] (psec)	Supply (V)	Power (mW)	Area (mm^2)	GBW/P _{DC} (GHz/mW)	Archit- ecture	Process
[1]	11	-	90	320	> 5	>7	2.4	-	2.5	210	1.28	1.52	DA^1	$0.12 \mu m$ SOI CMOS
[4]	7	13	81	362	>7	>7	> 5	-	5.5	495	1.17	0.73	DA^1	SiGe f_T =200 GHz
[5]	10	16	62	391	>11	>3	> 3	-	-5	775	0.3	0.51	$EF\&DP^2$	SiGe f_T =200 GHz
[6]	14	20	84	840	>7	>7	4	± 32	-5.5	990	0.63	0.85	$EF\&CA^3$	$0.18 \mu \mathrm{m}$ SiGe
[7]	-1	5	62	110	>14	-	> 3	-	2.5	125	-	0.88	$EF\&CH^4$	$0.13 \mu \mathrm{m}$ SiGe
[8]	10	-	102	323	>8	>9	< 2	± 6	2	73	0.29	4.42	DF & CW ⁵	$0.12 \mu \mathrm{m}$ SiGe
[9]	24	30	43	1360	>7	>7	> 2	± 10	-4	500	0.7	2.72	$EF\&CH^4$	$1 \mu \mathrm{m}$ InP SHBT
[11]	15	21	44	494	>6	>10	< 2	-	5.2	458	0.66	1.08	$EF\& CH^4$	InGaAs-InP HBT
[12]	15	-	67	729	>7	>10	> 2	± 10	3.5	133	0.09	5.50	-	$0.5 \mu m$ InP DHBT
[13]	21	-	120	1350	-10	-10	3	± 15	-	610	2	2.21	DA^1	InP DHBT
[14]	10	16	110	694	> 5	> 5	> 3	-	-4	304	0.95	2.28	$EF\&CH^4$	$0.25 \mu \mathrm{m}$ InP HBT
This work	14.5	20.5	100	1060	> 20	> 15	1	± 5.5	-2.5	145	0.21	7.31	$EF\&CH^4$	$0.25 \mu { m m}$ InP DHBT

* Measured single-ended S_{21} gain, ⁺ Inferred differential S_{21} gain, ⁺ Inferred differential S_{21} gain, ⁺ Inferred differential S_{21} gain × its 3-dB bandwidth, ⁺ Inferred differential S_{21} gain × its 3-dB bandwidth, ⁺ Inferred differential S_{21} gain × its 3-dB bandwidth, ⁺ Inferred differential S_{21} gain × its 3-dB bandwidth, ⁺ Emitter follower & Cherry-Hooper stage, and ⁺ Darlington feedback amplifier & constructive wave amplifier.

Thank you for your listening