Performance Impact of Post-Regrowth Channel Etching on InGaAs MOSFETs Having MOCVD Source-Drain Regrowth

Andrew D. Carter¹, S. Lee¹, D.C. Elias¹, C.-Y. Huang¹, J. J. M. Law¹, W. J. Mitchell¹, B. J. Thibeault¹, V. Chobpattana², S. Stemmer², A. C. Gossard¹, and M. J. W. Rodwell¹

¹ECE Department, ²Materials Department, University of California, Santa Barbara, CA 93106

> Device Research Conference 2013 Notre Dame, Indiana 6/24/2013

<u>Overview</u>

Why III-V for VLSI? Device Physics and Scaling Process Flows Measurements

Conclusions

Why III-V VLSI?

Higher electron velocities than Si MOS For short L_g FETs, $J_{drain} = q \cdot n_{s,channel} \cdot v_{sat}$ Transconductance, $g_m = C_{effective} \cdot v_{sat}$ J_d and g_m are key figures of merit in VLSI

However:

 J_d and g_m degraded by source large R_{access} J_d and g_m degraded by interface trap density, D_{it}

Therefore, we must develop:

Low access resistance source/drain contacts Thin, high-k, low *D_{it}* dielectrics on InGaAs Fully self-aligned process modules

MOSFETs have been, and <u>always</u> will be, a materials challenge.

FET Device Physics

Electron band diagram: gate-insulator-channel

Candidate III-V Planar Geometries

 Gate Metal
 Regrowth

 InGaAs Channel
 InAlAs Heterobarrier

 Insulating Substrate

"Trench" MOSFET Leverages HEMT tech.

Gate oxide \rightarrow Low I_g \odot Small footprint \odot

But

```
Will the L<sub>g</sub> scale?
```

 Replacement Gate MOSFET

 Easily defined L_g ☺

 Gate oxide ☺

 Small footprint ☺

 But

 Is RG doping high enough?

DRC 2013

Gate Replacement FET Process Flow

SiO ₂	SiO ₂	N+ S/D SiO2		N+ S/D	N+ S/D
InGaAs well	InGaAs well	InGaAs well	InGaAs well	InGaAs well	InGaAs well
InAIAs barrier	InAlAs barrier	InAlAs barrier	InAIAs barrier	InAIAs barrier	InAlAs barrier
S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate
MBE growth. deposit SiO2	Pattern dummy gate.	Regrow source/drain.	Strip SiO2, deposit gate dielectric.	Liftoff gate metal.	Etch gate dielectric, deposit S/D contacts.

MBE S/D Regrowth

Low-damage process Thermal gate metal No/Low-damage plasma Dielectric post-regrowth

STEM FET cross section, color-coded by chemistry *Figure courtesy Jeremy Law (UCSB)*

Gate Replacement FET Challenges

SiO ₂	SiO ₂	N+ S/D SiO2		N+ S/D	N+ S/D
InGaAs well	InGaAs well	InGaAs well	InGaAs well	InGaAs well	InGaAs well
InAIAs barrier	InAIAs barrier	InAlAs barrier	InAlAs barrier	InAlAs barrier	InAIAs barrier
S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate	S.I. substrate
MBE growth. deposit SiO2	Pattern dummy gate.	Regrow source/drain.	Strip SiO2, deposit gate dielectric.	Liftoff gate metal.	Etch gate dielectric, deposit S/D contacts.

SEM of dummy gate

MBE regrowth is non-selective \rightarrow requires photoresist planarization

Gate Replacement FET Challenges

Short dummy gates are hard to planarize, aspect-ratio-limited gate length DRC 2013

Solution: MOCVD S/D Regrowth *

MBE InAs RG MOCVD InGaAs RG

MBE is non-selective to the SiO_2 pillar, while MOCVD is selective!

 \rightarrow PR planarization no longer necessary \rightarrow short L_q that will not fall over

* Terao et al, APEX 2011, and Egard et al, DRC 2011

MBE Versus MOCVD S/D Regrowth

81 nm L_g, (1 nm Al₂O₃/ 4 nm HfO₂), 10 nm channel, MBE InGaAs Regrowth

Similar on-state performance, but large Vth shift, poor SS, DIBL

p. 10

Poor subthreshold: Channel Degradation

> 300 mV/dec subthreshold swing \rightarrow D_{it} ? Channel degradation?

Experiment: SiO₂ capping + high temp anneal + strip \rightarrow MOSCAP 5 nm Al₂O₃

InP channel capping for RG \rightarrow large subthreshold swing for FETs \otimes

p. 11

MOCVD: Digital Channel Etching

Top-down thin channels \rightarrow Increase C_{depth} Simultaneous damage removal and body scaling

* S.Lee et al, IPRM 2013

68 nm actual L_g, (1 nm Al₂O₃/ 4 nm HfO₂), No digital etching (~ 10 nm channel)

65 nm actual L_g, (1 nm Al₂O₃/ 4 nm HfO₂) 2 cycles of digital etching (~ 6.5 nm channel)

result

All devices improve with channel etch \rightarrow thinner channel, remove surface damage

Peak transconductance (mS/micron): 50 nm as drawn gate length, 0.5 V V_{gs}

No Etching (10 nm ch.)

2 Cycle Etching (~6.5 nm ch.)

1	1.10	0.90				
2	0.89	0.92	1.00			
3	0.93	0.90	1.10			
4	1.01	Blank	1.09	0.91	1.16	
5	Open	1.01	1.11	1.03	0.92	1.05
6	0.99	1.00	0.96	Open	0.88	Open
	А	В	С	D	E	F

1	1.38	1.50				
2	1.50	1.45	1.51			
3	1.50	1.21	1.53	1.53		
4	1.38	Blank	1.45	1.53	1.48	
5	1.15	1.58	1.42	1.36	1.26	1.47
6	1.09	1.38	1.42	1.47	1.39	1.50
	А	В	С	D	E	F

result

All devices improve with channel etch \rightarrow thinner channel, remove surface damage

result

All devices improve with channel etch \rightarrow thinner channel, remove surface damage

	R _{sh} (ohm/sq)	R _{end} (ohm-µm)	L _{transfer}
Not Thinned	39.4	17	430 nm
Thinned	46	19.8	430 nm

result

Lower performance for not etched channels not due to metal-RG contact

DRC 2013

MOCVD RG: Recent Results

* S. Lee et al, VLSI 2013

48 nm gate length, ~ 3.8 nm HfO₂, InGaAs with 2 cycle digital etching, p-doped back barrier

40 nm gate length, ~ 3.6 nm HfO_2 , InAs/InGaAs channel, digitally etched *

High performance III-V MOS using aggressively scaled ALD dielectrics

Conclusions

65 nm gate last InGaAs MOSFET process flow using MOCVD

 J_{drain} = 0.78 mA/ μm at 0.5 V V_{gs} – V_{th} , 0.5 V V_{ds}

Peak transconductance: 1.58 mS/micron at 0.5 V V_{ds}

Self-aligned process path for sub-50 nm III-V VLSI

Continued research areas Thinner gate dielectrics Body scaling (thin planar QW and/or FinFETs) Improved D_{it} passivation techniques <u>Thanks for your time!</u> <u>Questions?</u>

contact address: adc [at] ece.ucsb.edu

This research was supported by the SRC Non-classical CMOS Research Center (Task 1437.009). A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415.

BACK UP SLIDES

Name	Dopant (cm^{-3})	Thickness (nm)	Contact Metal	\mathbf{R}_{sheet} (Ω/\Box)	\mathbf{R}_{Access} $(\Omega \cdot \mu m)$	$ ho_{contact} (\Omega \cdot \mu m^2)$	Ref.
MBE							
n-InGaAs	Si, $\sim 5 \times 10^{19}$	~ 50	Mo, In-Situ	29	12	5.5	[18]
n-InAs	Si, $\sim 4 \times 10^{19}$	~ 50	Mo, In-Situ	23	8.5	3.5	[20]
n-InAs (1)	Si, $\sim 5 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	21.4	6.5	2	[24]
n-InAs (2)	Si, $\sim 5 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	25.3	9.9	3.9	
n-InAs (1)	Si+Te, $\sim 6 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	17	4.7	1.29	
n-InAs (2)	Si+Te, $\sim 6 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	18.9	6.56	2.2	
n-InAs (3)	Si+Te, $\sim 6 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	17.8	10.6	6.32	
n-InAs	Si+Te, $\sim 6 \times 10^{19}$	~ 60	Ni/Pd/Au [†] , Ex-Situ	17.8	3.25	0.5	
n-InGaAs	Si+Te, $\sim 5 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	43.3	17.7	7.22	
MOCVD							
n-InGaAs (1)	Si, $\sim 4.5 \times 10^{19}$	~ 30	Ti/Pd/Au, Ex-Situ	41.8	32.44	25.2	
n-InGaAs (2)	Si, $\sim 4.5 \times 10^{19}$	~ 30	Ti/Pd/Au, Ex-Situ	39.4	16.97	7.29	
n-InGaAs (3)	Si, $\sim 4.5 \times 10^{19}$	~ 30	Ti/Pd/Au, Ex-Situ	46	19.8	8.5	
n-InGaAs	Si, $\sim 4.5 \times 10^{19}$	~ 60	Ti/Pd/Au, Ex-Situ	23.5	13.02	7.2	

Table 4.1: Summary of MBE and MOCVD regrowth data. Dopant concentration is active carrier concentration. Electron beam evaporation for metal contacts, unless otherwise noted. [†] : thermal metal evaporation.

MOCVD RG: Recent Results

48 nm gate length, ~ 3.8 nm HfO₂, InGaAs with 2 cycle digital etching, p-doped back barrier

40 nm gate length, ~ 3.6 nm HfO₂, InAs/InGaAs channel, digitally etched *

High performance III-V MOS using aggressively scaled ALD dielectrics

* S. Lee et al, VLSI 2013

FET Device Physics

 $C_{effective}$ includes C_{ox} , C_{depth} , C_{dos}

Electron band diagram of a quantum well FET

Si CMOS scaling: Contacted gate pitch 4x the gate length¹⁾

4:1 reduction of contact area²⁾ \rightarrow 4:1 reduction of $\rho_{contact}$

22 nm node \rightarrow 33 nm L_{S/D} \rightarrow For L_{S/D} = L_T, requires 5x10⁻⁹ ohm-cm² $\rho_{contact}$

Contact Transfer Length =
$$L_T = \sqrt{\frac{\rho_c}{R_{sh}}}$$

¹⁾ S. Natarajan, *et al*, IEDM 2008.

²⁾ M.J.W. Rodwell, *et al*, IPRM 2010.

Gate First FET Process Flow

Thick (10 nm) channel

Process damage mitigation

Heavy (~ 9x10¹² cm⁻²) δ doping

Prevents ungated sidewall current choke

In_{0.52}Al_{0.48}As heterobarrier Carrier confinement Semi-insulating InP

Device isolation

Gate First FET Process Flow

Front End: Gate Stack Definition

In-situ hydrogen plasma / TMA treatment before Al₂O₃ growth Mixed e-beam / optical lithography Bi-layer gate (Sputtered W + e-beam evaporated Cr) High selectivity, low power dry etch

FET Process Development

Use optical lithography to produce >0.5um gates Use electron beam lithography to produce sub-100nm gates Need to investigate possible e-beam damage to oxides

EBL Tests

Finished Gate Etch + Sidewall Deposition DRC 2013

FET Process Development

ICP dry etches calibrated to perform at sub-100nm scale

Higher power dry etch \rightarrow vertical gate stack

Undercutting leads to fallen gates, ungated access regions \rightarrow Minimize Cr undercut by reducing thickness

Gate First FET Process Flow

Front End: Gate Stack Definition

Sidewall Deposition Conformal, protects S/D short circuit to gate Sidewall etch Vertical gate stack → self aligned sidewall p. 29

FET Process Development

Low power etch \rightarrow Isotropic etching + undercut \rightarrow fallen gates Large undercuts \rightarrow ungated regions \rightarrow high R_{access}

Thick gate stack:Small $L_g ©$ Large sidewall foot ©Unreliable gates ©

Thin Cr stack:	Small
$L_g \odot$	Large
sidewall foot 😕	
Repeatable gate etc	h?

20 nm

ALD SiO2 sidewall:Small $L_g ©$ Still sidewall foot! ©Unrepeatable gate undercut ©

E

Gate First FET Process Flow

Regrowth and Back End

Surface preparation

UV O₃ exposure to clean the source/drain, removed *ex-situ* before MBE load

MBE InAs Regrowth

Low arsenic flux, high temperature \rightarrow near gate fill in

Metallization and Mesa Isolation

In-situ Mo in MBE optional for lower ρ_c

Ti/Pd/Au liftoff

Wet etch for mesa isolation

Gate First FET Process Flow

TEM micrographs of 60 nm L_g device

DRC 2013

p. 32

Gate First FET Results

Gate First FET Results

High J_{drain} but depletion mode

Transconductance: Similar to previous results^{*} (~0.3mS/ μ m) Low R_{on} (371 ohm- μ m) for InGaAs MOSFETs

Gate First FET Results

J_{drain} increases rapidly with gate length scaling Transconductance: Relatively flat with gate length scaling

FET: Access Resistance

MOSFET On Resistance

Gateless Transistor Resistance

Gateless transistor effective diagnostic of regrowth

DRC 2013

Gate First FET: Metal-Regrowth TLM

Ex-situ Ti/Pd/Au / n-type InAs contacts: $\rho_c = 2 \times 10^{-8}$ ohm-cm²

In-situ Mo / n-type InAs contacts have shown $\rho_c = 6 \times 10^{-9}$ ohm-cm² *

^{*)} M.J.W. Rodwell, et al, IPRM 2010.

Gate First FET: Issues

Ungated region → potential current choke Thinner sidewall can help...

... but hard to control with gate undercut

Electron band diagram of channel underneath sidewall

DRC 2013

Gate First FET: Issues

Heavy δ doping \rightarrow parallel conduction, poor g_m Large leakage current in device Decreases $C_{depth} \rightarrow limits g_m$

Must reduce δ doping while maintaining low R_{access}

FET Device Physics

FET Device Scaling

FET parameters	Scaling Rule	How?
Current Density $(mA / \mu m)$, gm $(mS / \mu m)$	increase 2:1	
Gate Length and Contact Spacing $(L_g, L_{S/D})$	decrease 2:1	Lithographic Scaling
Channel Electron Density	increase 2:1	Channel Material and Orientation
Electron Transport Mass (m* _{transverse})	constant	Channel Material and Orientation
Gate Capacitance	increase 2:1	
Channel Density of States	increase 2:1	Channel Material and Orientation
Channel Thickness (T _{inv})	decrease 2:1	Materials Engineering
Effective Oxide Thickness (T _{ox})	decrease 2:1	Materials Engineering
Source/Drain Contact Resistivity	decrease 4:1	Materials Engineering

Rodwell, IPRM 2010

- 5 nm channel, 500 cm²/(V*s) mobility, 5E19 cm⁻³ carriers = 500 ohm/sq
- 5E-9 ohm cm² contact resistance
- L_{transfer} ~ 31 nm

Contact Transfer Length =
$$L_T = \sqrt{\frac{\rho_c}{R_{sh}}}$$

 ¹⁾ S. Natarajan, *et al*, IEDM 2008.
 ²⁾ M.J.W. Rodwell, *et al*, IPRM 2010.

FET Process Development

1) Poorly controlled dry etch undercut – Low power etch \rightarrow Isotropic etching

Thick gate stack:Small $L_g ©$ Large sidewall foot ©unreliable gates ©

100 nm

Thin Cr stack: Small $L_g \textcircled{S}$ Large sidewall foot SReliable gate etch? ALD SiO₂ sidewall: Small $L_g \bigcirc$ Still sidewall foot! \bigcirc Unreliable gate undercut \oslash