III-V MOS:

Record-Performance Thermally-Limited Devices, Prospects for

High-On-Current Steep Subthreshold Swing Devices

Mark Rodwell, UCSB

III-V MOS
C.-Y. Huang, S. Lee*, A.C. Gossard,
V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB

Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue

Now with: *IBM, **Intel

<u>III-V vs. Si:</u> Low m*→ higher velocity. Fewer states→ less scattering → higher current. Can then trade for lower voltage or smaller FETs.

<u>Problems</u>: Low $m^* \rightarrow$ less charge. Low $m^* \rightarrow$ more S/D tunneling. Narrow bandgap \rightarrow more band-band tunneling, impact ionization.

Reducing leakage: Vertical spacer, Ultra-thin channel

Courtesy of S. Kraemer (UCSB)

*Heavy elements look brighter

Lee et al., 2014 VSLI Symposium

S. Lee et al., VLSI 2014

Reducing leakage: Vertical spacer, Ultra-thin channel

Off-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

Better SS at all gate lengths

 \leftarrow Better electrostatics (aspect ratio) and reduced BTBT (quantized E_g)

~10:1 reduction in minimum off-state leakage

~5:1 increase in gate leakage 🗲 increased eigenstate

On-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel

ZrO₂ vs. HfO₂: Peak g_m, SS, split-CV, and mobility

Comparison: two process runs ZrO_2 , one run HfO_2 , both 2nm (on 1nm Al_2O_3)

(1) ZrO₂ higher capacitance than HfO₂, (2) <u>ZrO₂ results, low SS, are reproducible</u>

Double-heterojunction MOS: 60 pA/ μ m leakage

- Minimum I_{off} ~ 60 pA/µm at $V_D = 0.5V$ for $L_g 30$ nm
- 100:1 smaller I_{off} compared to InGaAs spacer
- BTBT leakage suppressed → isolation leakage dominates

12 nm L_g III-V MOS

 I_D-V_G and I_D-V_D curves of 12nm L_q FETs

Mobility extraction at L_a -25 µm long channel FETs

Steep FETs

Tunnel FETs: truncating the thermal distribution

Tunnel FETs: are prospects good ?

Useful devices must be small

Quantization shifts band edges→ tunnel barrier

Band nonparabolicity increases carrier masses

Electrostatics: bands bend in source & channel

What actual on-current might we expect ?

Tunneling Probability

Transmission Probability (WKB, square barrier)

 $P \cong \exp(-2\alpha T_{\text{barrier}}), \text{ where } \alpha \cong \frac{\sqrt{2m^* E_{\text{barrier}}}}{\hbar}$

Assume: $m^* = 0.06 \cdot m_0$, $E_b = 0.2 \text{ eV}$

Then:

 $P \cong 33\%$ for a 1nm thick barrier

 $\cong 10\%$ for a 2nm thick barrier

 $\cong 1\%$ for a 4nm thick barrier

For high I_{on}, tunnel barrier must be *very* thin.

~3-4nm minimum barrier thickness: P+ doping, body & dielectric thicknesses

T-FET on-currents are low, T-FET logic is slow

NEMO simulation:

GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ ε_r =12, 12nm L_q

Resonant-enhanced tunnel FET Avci & Young, (Intel) 2013 IEDM

Figure 16 I-V curves for Lg=9nm NW R-TFET, Het-j TFET and MOSFET. R-TFET has 100x higher Ideat than MOSFET at VDD=0.27V. (Ioff=10pA/um, Vds=0.3V)

2nd barrier: bound state

dI/dV peaks as state aligns with source

improved subthreshold swing.

Can we also increase the on-current?

Electron anti-reflection coatings

Tunnel barrier:

transmission coefficient < 100% reflection coefficient > 0% want: 100% transmission, zero reflection familiar problem

Optical coatings reflection from lens surface quarter-wave coating, appropriate *n* reflections cancel

Microwave impedance-matching reflection from load quarter-wave impedance-match no reflection Smith chart.

T-FET: single-reflector AR coating

Peak transmission approaches 100%

Narrow transmission peak; limits on-current

Can we do better?

Limits to impedance-matching bandwidth

Yes! Schrödinger's equation is isomorphic to E&M plane wave. Khondker, Khan, Anwar, JAP, May 1988 T-FET design → microwave impedance-matching problem Fano: limits energy range of high transmission Design T-FETs using Smith chart, optimize using filter theory Working on this: for now design by random search

 ${}^{*}E/h \leftrightarrow f, \phi \leftrightarrow V, \psi \leftrightarrow I, \text{ probability current} \leftrightarrow \text{power, where } \phi(x) = (\hbar/jm^{*})(\partial \psi/\partial x)_{20}$

T-FET with 3-layer antireflection coating

Interim result; still working on design

Source superlattice: truncates thermal distribution

Proposed 1D/nanowire device:

M. Bjoerk et al., U.S. Patent 8,129,763, 2012. E. Gnani et al., 2010 ESSDERC

Planar (vs. nanowire) superlattice steep FET

Planar superlattice FET

superlattice by ALE regrowth easier to build than nanowire (?)

Performance (simulations):

~100% transmission in miniband. 0.4 mA/ μ m I_{on} , 0.1 μ A/ μ m I_{off} ,0.2V

Ease of fabrication ? Tolerances in SL growth ? Effect of scattering ?

(backup slides follow)