InGaAs/InP DHBTs using MOCVD Selective Emitter Regrowth

Prateek Choudhary, Cheng-Ying Huang, Johann Rode, Han-Wei Chiang, Mark Rodwell University of California, Santa Barbara

THz InP HBTs demonstrated

TSC f_t/f_{max} 525/1150 GHz – Urteaga et. al; DRC, 2011
 UCSB f_t/f_{max} 480/1070 GHz – Rode et. al; TED, 2015

Challenges for next generation

Low base contact resistivity
Drop in current gain with emitter scaling

Propose MOCVD Emitter Regrowth

- Good base contact resistivity
- Demonstrate moderate current gain

InP bipolar transistor scaling roadmap

		256	128 →	64	32	Width (nm)
Design	Emitter	8	4	2	1	Access ρ (Ω·μm²)
	Base	175	120	60	30	Contact width (nm)
		10	5	2.5	1.25	Contact <i>ρ</i> (Ω·μm²)
	Collector	106	75	53	37.5	Thickness (nm)
ance	Current density	9	18	36	72	mA/μm²
	Breakdown voltage	4	3.3	2.75	2-2.5	V
forn	f,	520	730	1000	1400	GHz
Per	f _{max}	850	1300	2000	2800	GHz

Need for better base contacts!

Rodwell, Le, Brar, Proceedings of IEEE, 2008

Refractory Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm / Performance sufficient for 32 nm /2.8 THz node.

Problem – Reproducing data on HBT process flow

Current gain (β) drops with scaling

Need higher β for PA, DAC, Mixers ...

Lateral Diffusion (bulk and surface)

 $\cdot I_{B,edge} a 1/W_{E}$

BE diode, top-down view

Lateral Diffusion (bulk and surface) •I_{B,edge} a 1/W_E

High base doping (N_A) •High Auger recombination

•RF HBTs need •Small emitter width - β_{edge} decreases •High base doping - β_{bulk} decreases

Need to increase β

Possible via MOCVD Emitter Regrowth

MOCVD Emitter Regrowth Is it feasible?

MOCVD introduces H⁺

- Passivates p-InGaAs carbon doping
- Can the carbon be reactivated?

•Good base contacts with emitter regrowth?

H⁺ passivates carbon p-dopant in InGaAs base

Annealing reactivates C dopants

Limited success so far

*All samples annealed with oxide cap

** Hall Measurement

Sample prep	Anneal condition @ 500°C	**Carrier Concentration (before regrowth) (10 ¹⁹ cm ⁻³)	**Carrier Concentration (after regrowth) (10 ¹⁹ cm ⁻³)
p-InGaAs->regrow n-InP ->etch InP	No anneal	10	0.7
p-InGaAs->regrow n-InP ->etch InP	20min, N ₂	10	5.5
p-InGaAs->NO regrowth	20min, N_2	10	5.5

The anneal lowers p-doping by 45%!

Good p-InGaAs Contacts With Emitter Regrowth

p-InGaAs doping before RG (10 ¹⁹ /cm ³)	RG	RG Mask	Anneal Temp (°C)	Contact Metal	Contact Resistivity (Ω.um²)
10	Ν	—	—	W/Ti/Au	2.9
10	Y	W/SiO ₂	500	W/Ti/Au	5.47

Base contacts sufficient for 100nm Emitter width

Emitter Regrowth Large Area Devices (LAD)

Process Flow

Process Flow

Regrowth LAD

Regrowth LAD

Emitter Regrowth – Initial Results

Regrown transistors show moderate gain

•Large BC leakage

•Cannot measure common emitter

•High base sheet resistance after anneal

Base doping before	Sheet Resistance	Sheet Resistance		
RG (10 ¹⁹ cm ⁻³)	(Ω/sq)	after RG(Ω/sq)		
9-5	1250	2392		

Incomplete p-InGaAs C reactivation

Summary

•Emitter regrowth is feasible partial p-InGaAs carbon reactivation shown contact resistivity sufficient for 100nm node

Low base doping affecting device performance

•Future work higher base doping regrowth with W/SiO₂ mask scaling emitter width/thicker base

Thank You

Backup

THz Transistors

THz InP HBTs: Performance @ 130 nm Node

Teledyne: M. Urteaga et al: 2011 DRC

THz InP HBTs: Performance @ 130 nm Node

UCSB: J. Rode et al: 2015 IEEE TED

Refractory Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm / Performance sufficient for 32 nm /2.8 THz node.

Problem – Reproducing data on HBT process flow

LAD – Current crowding due to high R_{bb}

LAD – B-E diode

25nm base, doped 9-5e19 cm⁻³ 100nm collector *B-E diode resistive due to excessive base mesa lateral undercut

LAD – B-C diode

LAD – Gummel

LAD – Common Emitter Characteristics

34

MOCVD Regrowth – Good Selectivity with Oxide

