

High-linearity W-band Amplifiers in 130 nm InP HBT Technology **Robert Maurer¹**, Seong-Kyun Kim¹, Miguel Urteaga², and Mark J. W. Rodwell¹ UC Santa Barbara¹ Teledyne Scientific Company²

CSICS 2016 Austin, TX

Motivation

1-50 GHz High-Dynamic-Range Dual-Conversion Receiver

100 GHz IF for widely tunable receiver bandwidth

System dynamic range limited by IF chain IP3 & noise

Design Goals

System Requirements:

High IIP3 > 24 dBm (100 GHz, >5 GHz BW)

Gain > 6 dB

Preferably with:

Low Noise Figure

Limited chip space/power consumption

Design Strategy

How do we achieve such high IP3 at 100 GHz?

Approach:

High speed 130 nm InP HBT technology

Common emitter

Pseudo-differential

2nd Harmonic output short-circuit

Strong inductive degeneration Sacrifices gain for linearity Partly converges noise & S₁₁ tuning

TSC 130 nm InP HBTs

Extremely high-speed technology

 $f_{max} = 1.1 THz$

How does this contribute to linearity?

High speed: 13.5 dB MAG/MSG at 100 GHz (2 mA/ μ m of L_E)

High maximum available/stable gain Can sacrifice gain for linearity: inductive emitter degeneration.

Degeneration also converges tuning for optimum noise and minimum $\ensuremath{\mathsf{S}_{11}}$

Pseudo-Differential

Single-ended design:

Ground Via Inductance prevents true RF ground Power supply lines de-tune output network Poor power supply isolation Instability, unwanted interstage coupling

True differential design:

Provides RF virtual ground Must be stable for differential *and* common-mode Emitter stub likely capacitive in common-mode

Pseudo-differential design:

No common-mode instability problem Power-supply is virtual ground

High-linearity: Want linear gain at design frequency ω_o

$$\omega_o: V_{out} \alpha V_{in}$$
 \bigcirc

Don't want 3^{rd} order distortion IM3 near design frequency ω_o

$$\omega_o: V_{out} \alpha V_{in}^3$$

What about 2^{nd} order distortion IM2 at frequency $2\omega_{o}$?

$$2\omega_{o}: V_{out} \alpha V_{in}^{2}$$
 ?

IM2 itself is out-of-band, but mixing with fundamental adds extra cubic term to V_{out}

2nd harmonic tone contributes to IM3, degrades IP3

2nd Harmonic Short-Circuit

 $\lambda/4$ transmission line: open circuit at ω_o short circuit at $2\omega_o$

Eliminates IM2, which removes an IM3 mechanism

~2-3 dB IP3 improvement

IC layout

Emitter inductance

2nd harmonic short

Die layout

Input & output baluns: single-ended on-wafer probing

Back-to-back balun test structure for de-embedding

Overall Die: 1.1 mm x 0.72 mm **Differential Amplifier:** 0.46 mm x 0.47 mm

Back-to-back Baluns $S_{21} = -2.4 \text{ dB} @ 100 \text{ GHz}$

S-Parameters

Simulated: amplifier without baluns Measured: amplifier with baluns

De-embedded: measurements corrected to remove balun attenuation

Measured S_{21} of 6-7 dB, close to simulation

Noise Figure Measurements

Measured noise figure of 7-8.5 dB, close to simulation

IP3 Measurements

OIP3 is 21-22 dBm, 4-5 dB lower than simulation

Comparison

Very few reported mm-wave high linearity amplifiers

High speed InP/InGaAs transistors pushing frequency limits

O. Nizhnik, et. al. *APMC* 2007¹, M. Zavarei, et. al. *ICECS* 2011², R. Huang, et. al. *APCCAS* 2014³, W. Chang, et. al. *APMC* 2013⁴, K. Kobayashi, et. al. *JSSC* 2016⁵, Y. Kwon, et. al. *M&GW Letters* 1996⁶,

F. Canales et. al. IMS 2013⁷, K. Kobayashi, et. al. JSSC 1999⁸, K. Nishikawa, et. al. IMS 2006⁹

High-Linearity W-band Amplifier

100 GHz IFA for mm-wave dual conversion receiver

Enabled by high-speed 130 nm InP HBTs

S₂₁ of 6.4 dB, OIP3 of 22 dBm, Noise figure of 7 dB

OIP3/P_{DC} ratio of 0.79 at 100 GHz

Among first reported W-band high-linearity amplifier results

Thanks to Teledyne Scientific & Imaging for IC fabrication!

Thank you!!

Amplifier Design (Receiver)

2md generatin design

	1 st design	2 nd design
HBT Cell Size	4 X 5 μm	8 X 5 μm
S ₂₁ * (dB)	6	6.5
OIP3* (dBm)	26	31
IIP3* (dBm)	20	24
I _{DC} * (mA)	100	57
P _{DC} * (mW)	200	114
Noise Fig.* (dB)	7.3	6
Core Area (μm X μm)	414 X 502	380 X 458
		(simulated)

Increased cell size + Reduced current density = Improved performance

Pseudo-Differential

Single-ended approach:

Power supply lines detune output network Poor power supply isolation \rightarrow instability, inter-stage coupling

True differential approach:

Power-supply virtual ground prevents coupling & de-tuning Potential for common-mode instability problems

Pseudo-differential approach:

No common-mode instability Power-supply is virtual ground

IC layout

Amplifier layout

Emitter inductance

2nd harmonic short

2-tone W-band Measurements

On-wafer 2-tone W-band IP3 measurement testbench constructed from WR-10 waveguide components

Fundamental tone f₁ generated w/ PNA & freq. extender heads

Fundamental f₂ generated w/ synthesizer, a doubler, and a tripler

Fundamentals combined with a "magic tee" combiner

W-band output downconverted to 1 GHz IF

Fundamental output & 3rd harmonic tone observed with spectrum analyzer

2-tone W-band Measurements

2-tone IP3 Measurements

IP3 measurements performed at $f_1 = 94$, 96, 98, 100 GHz

f₂ kept 100 MHz above f₁

High-Linearity W-band Amplifier

100 GHz IF Amplifier in dual conversion receiver

6.4 dB gain, 15.5 dBm IIP3 (Δ 100 MHz) at 100 GHz

6.8 dB Noise Figure @ 95 GHz

OIP3/P_{DC} ratio of 0.79

Among first reported results for IP3 in W-band

