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1-50 GHz High-Dynamic-Range Dual-Conversion Receiver
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Specific LNA 100 GHz LO

LO & LO &
Multiplier Multiplier
Chain Chain

100 GHz IF for widely tunable receiver bandwidth

System dynamic range limited by IF chain IP3 & noise



Design Goals

System Requirements:

High 1IP3 > 24 dBm (100 GHz, >5 GHz BW)

Gain > 6 dB

Preferably with:

Low Noise Figure

Limited chip space/power consumption



Design Strategy 3
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How do we achieve such high IP3 at 100 GHz?
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Approach:

High speed 130 nm InP HBT technology
Common emitter

Pseudo-differential

2"d Harmonic output short-circuit

Strong inductive degeneration

Sacrifices gain for linearity
Partly converges noise & S;; tuning
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TSC 130 nm InP HBTs
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Extremely high-speed technology

fro=1.1THz

How does this contribute to linearity?

High speed: 13.5 dB MAG/MSG at 100 GHz (2 mA/um of Lg)

High maximum available/stable gain
Can sacrifice gain for linearity: inductive emitter degeneration.

Degeneration also converges tuning for optimum noise and minimum
S11
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Pseudo-Differential Dt

: : Single-ended
Single-ended design: J Y

Ground Via Inductance prevents true RF ground 1

Power supply lines de-tune output network ES\F’)\S; ine

Poor power supply isolation HF@—I

Instability, unwanted interstage coupling Z, # 0 Q“| stub tuning

(o Out

True differential design: In

Provides RF virtual ground _ _

Must be stable for differential and common-mode Differential

Emitter stub likely capacitive in common-mode E‘] ﬁ

Out- o o Out+

Pseudo-differential design: In+ In-

No common-mode instability problem Emitter Stub
Power-supply is virtual ground

Rbias
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2"d Harmonic Short Circuit ek 1

High-linearity: Want linear gain at design frequency w,
®o: Vour @ Vin O

Don’t want 3' order distortion IM3 near design frequency w,
Wo: Vour Vin3 @

What about 2"d order distortion IM2 at frequency 2w, ?

2w,: Vyyr @ Vi 7

IM2 itself is out-of-band, but mixing with fundamental adds
extra cubic term to V

2"d harmonic tone contributes to IM3, degrades IP3



2"d Harmonic Short-Circuit X!
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*2nd harmonic
short

A4 transmission line:
open circuit at w,
short circuit at 2w,

Eliminates IM2, which
removes an IM3 mechanism

~2-3 dB IP3 improvement



IC layout

Amplifier layout Degenerated HBT
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Emitter inductance

2"d harmonic short




Die layout é\@

Input & output baluns: single-ended on-wafer probing

Back-to-back balun test structure for de-embedding

Overall Die: 1.1 mm x 0.72 mm Back-to-back Baluns
Differential Amplifier: 0.46 mm x 0.47 mm S,,=-2.4dB @ 100 GHz

Ppc = 200 MW (100 mA, 2V) "



S-Parameters
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Simulated: amplifier without baluns
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De-embedded: measurements corrected to remove balun attenuation

Measured S,, of 6-7 dB, close to simulation
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Noise Figure Measurements %
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Measured noise figure of 7-8.5 dB, close to simulation
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IP3 Measurements
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OIP3 is 21-22 dBm, 4-5 dB lower than simulation

OIP3, dBm
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Comparison X
100 ® 350 nm Si BiCMOS!
o ) M 180 nm Si CMOS?3
o 10 "o | ® 250 nm GaN HEMT*
a - B 150 nm GaN HEMTS
o CB AlGaAs/GaAs HBT®
o 1 *
@) - 100 nm InGaAs HEMT’
This
o .
01 0 Work @ Linearized InP HBT
| ‘ | B 100 nm InP HEMT?®
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Frequency (GHz)

€@ 130 nm InP HBT (This Work)

Very few reported mm-wave high linearity amplifiers

High speed InP/InGaAs transistors pushing frequency limits

O. Nizhnik, et. al. APMC 2007%, M. Zavarei, et. al. ICECS 20112, R. Huang, et. al. APCCAS 20143,
W. Chang, et. al. APMC 2013%, K. Kobayashi, et. al. JSSC 2016°, Y. Kwon, et. al. M&GW Letters 19969,
F. Canales et. al. IMS 20137, K. Kobayashi, et. al. JSSC 19998, K. Nishikawa, et. al. IMS 2006° 14



High-Linearity W-band Amplifier @

100 GHz IFA for mm-wave dual conversion receiver
Enabled by high-speed 130 nm InP HBTs
S,, of 6.4 dB, OIP3 of 22 dBm, Noise figure of 7 dB

OIP3/Ppy ratio of 0.79 at 100 GHz

Among first reported W-band high-linearity amplifier
results

Thanks to Teledyne Scientific & Imaging for IC fabrication!



Thank you!!
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Amplifier Design (Receiver)  ‘w¥

base
collector

4 X 5 um per cell

nd ;
emitter 2"d harmonic short

inductive line
17
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2md generatin design Dt

1t design 2"d design

HBT Cell Size 4X5pum 8 X5 um

S,.* (dB) 6 6.5

0IP3* (dBm) 26 31

IIP3* (dBm) 20 24

Ioc* (MA) 100 57

Poc* (MW) 200 114

Noise Fig.* (dB) 7.3 6

Core Area (um X um) | 414 X 502 380 X 458

(simulated)

Increased cell size + Reduced current density = Improved performance

Slide 18
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Pseudo-Differential Wby
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Single-ended approach:
Power supply lines detune output network
Poor power supply isolation = instability, inter-stage coupling

True differential approach:
Power-supply virtual ground prevents coupling & de-tuning
Potential for common-mode instability problems

Pseudo-differential approach:

No common-mode instability
Power-supply is virtual ground

19



IC layout

Degenerated HBT Amplifier layout

Emitter inductance

2"d harmonic short
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2-tone W-band Measurements

On-wafer 2-tone W-band IP3 measurement testbench constructed
from WR-10 waveguide components

Fundamental tone f; generated w/ PNA & freq. extender heads
Fundamental f, generated w/ synthesizer, a doubler, and a tripler
Fundamentals combined with a “magic tee” combiner

W-band output downconverted to 1 GHz IF

Fundamental output & 3rd harmonic tone observed with spectrum
analyzer



2-tone W-band Measurements @
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First
Fundamental
Tone f; 20 dB
Directional
Coupler
Matched Sowar
Hybrid Tee
Combiner \ Sensor
DUT
RF
Fund Seco?dl T Lo
undamental Tone IF f,—1GHz
fi+ 100 MHz
Spectrum
Analyzer

IP3 measurements performed at f;, = 94, 96, 98, 100 GHz

f, kept 100 MHz above f,
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High-Linearity W-band Amplifier @

100 GHz IF Amplifier in dual conversion receiver
6.4 dB gain, 15.5 dBm |IP3 (A 100 MHz) at 100 GHz
6.8 dB Noise Figure @ 95 GHz

OIP3/Pyratio of 0.79

Among first reported results for IP3 in W-band
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