

Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology **Robert Maurer¹**, Seong-Kyun Kim¹, Miguel Urteaga², and Mark J. W. Rodwell¹ UC Santa Barbara¹ Teledyne Scientific Company²

CSICS 2016 Austin, TX

Motivation

Broadly-tunable high-dynamic-range dual conversion receiver

Passive mixer IP3 determined by LO drive power

Receiver bandwidth limited by LO driver bandwidth

Design Goals

Need to design a power amplifier with:

```
Wide bandwidth (~50 GHz -100 GHz)
```

High output power (> 21dBm)

Preferably with:

Limited size

High power efficiency

How can we achieve such a large bandwidth without sacrificing performance?

2 Key Factors:

1) 1.1 THz f_{max} 130 nm InP HBT technology¹ Low device C_{cb} of $0.82 \frac{fF}{\mu m(L_E)}$ Enables larger output tuning bandwidth

2) Sub-λ/4 balun series power combining² Simultaneous output matching & power combining Compact, wide-band, low-loss power combining

M. Urteaga, et. al. *DRC* 2011¹, H. Park, et. al. *IEEE JSSC*, 2014²

TSC 130 nm InP HBTs

High speed: 1.1 *THz* f_{max} , 520 *GHz* f_{τ}

Low base-collector capacitance: 0.8 $\frac{fF}{\mu m(L_E)}$

Max output tuning bandwidth:

$$\Delta f_{output} = \frac{1}{2\pi R_{Load} C_{CB}}$$

Low
$$C_{CB} \rightarrow \text{High } \Delta f_{output}$$

Sub-λ/4 Baluns

3-metal transmission line power combiner (m_1, m_2, m_3)

HBT outputs $V_1 \& V_2$ combined on m_3

T-line between $m_1 \& m_2$ provides shunt inductive tuning

For more info, refer to H. Park, et. al., IEEE JSSC, 2014

Amplifier Design

- 4:1 Series, 2-way parallel combining
- Baluns designed to provide inductance to cancel C_{out}
- Minimum amount of tuning elements

Pre-amplifier Stage

2:1 Series, 2-way parallel splitting

Designed so stage 1 outputs line up with inputs stage 2

Provides additional gain & eliminates need for lossy splitter

Power Amplifier IC

IC Area: 0.9 mm X 1.68 mm = 1.51 mm²

Signal Path

Small Signal Bandwidth

90 GHz small signal bandwidth

Broad output matching bandwidth

Input matched only near 100 GHz

50 GHz

80 GHz

100 GHz

PAE > 8% from 50 GHz to 100 GHz

3-dB compression of output power >15.5 dBm

Comparison

Broadband / High Performance mm-Wave Power Amplifiers

Technology	Freq. (GHz)	BW _{3dB} (GHz)	Max S ₂₁ (dB)	P _{out} (dBm)	Peak PAE (%)	Topology	Ref
0.25 μm InP HBT	86	23	9.4	20.37	30.4	2-way Power Combining Balun	1
0.14 μm GaN HEMT	90	35	21	24.5	13.2	4-stage Balanced Amplifier	2
65 nm Si CMOS	94	33	18	12	4.5	4-way Combining 6- stage CS	3
0.15 μm GaN HEMT	91	~7	16	31.2	20	3-stage	4
130 nm InP HBT	90	90	15	22	14.9	2-stage 2-way power combining balun	This Work

H. Park, et. al. CS/CS 2013¹, A. Margomenos, et. al. *EuMIC* 2012², K. Wu, et. al. *Trans. THz Sci. & Tech.* 2014³, A. Brown, et. al. *IMS* 2011⁴

Broadband power amplifier designed as LO Driver for high dynamic range mm-wave dual conversion receiver

Uses low- C_{CB} 130 nm InP HBTs and sub- λ /4 baluns

Peak PAE of 14.9%, P_{out} of 22 dBm at 90 GHz

PAE > 8% and P_{3dB} >15.5 dBm from 50-100 GHz

 $S_{21} = 15 \text{ dB}, 3 \text{-dB}$ Bandwidth from 24 GHz – 114 GHz

Thanks to Teledyne Scientific & Imaging for IC fabrication!

Thank you!!

55 GHz

20

60 GHz

65 GHz

Broadband Power amplifier uses 130 nm InP HBTs and sub- $\lambda/4$ baluns to achieve 50-100 GHz large sig. bandwidth

Peak PAE of 14.9%, P_{out} of 22 dBm at 90 GHz PAE > 8% and P_{3dB} >15.5 dBm from 50-100 GHz

 $S_{21} = 15 \text{ dB}$, 3-dB Bandwidth from 24 GHz – 114 GHz

Thanks to Teledyne Scientific & Imaging for IC fabrication!

Sub-λ/4 Baluns

Series combining of differential signals V1 & V2

 θ_2 tailored to tune transistor $C_{out}!!$

Compact, low-loss power combiners

*H. Park, et. al., IEEE JSSC, 2014

Amplifier Design

4:1, 2-way power combining (4 series, 2 parallel)

Create Power Cell & Determine Cout

Design 2-way 4:1 output Balun such that $Z_{stub} = \frac{j}{\omega C_{out}}$

Create symmetrical Input balun, measure port Z_{in}

DC couple baluns to PA cell (Minimum output matching)

Design Input Match

High Switching speed: 1.15 *THz* f_{max} , 521 *GHz* f_{τ}

Low Base-Collector Capacitance: $0.82 fF/\mu m(L_E)$ \rightarrow High Bandwidth!

Max output tuning bandwidth:

$$\Delta f_{output} = \frac{1/2\pi (R_{Load})C_{CB}}{R_{Load}}$$
$$R_{Load} = \frac{(V_{max} - V_{min})}{I_{max}}$$

How can we achieve such a large bandwidth?

- 2 Key Factors:
- 1) 1.15 THz f_{max} 130 nm InP HBT Technology [1]
 - Low device C_{cb} of $0.82 \frac{fF}{\mu m (L_E)}$
- **2)** Sub-λ/4 Balun Series Power Combining [2]
 - Simultaneous Output match & Power combining
 - Compact, Wide-band, Low-loss power combining