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What does VLSI need ?

Low voltage
low switching energy CV,,%/2 .

Large on-current
small delay CV,, /1.

Large on-
current

Low leakage current
thermal: /. ccexp(-qV,,/kT)
want low V;, yet low /.
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Tunnel FETs: truncating the thermal distribution
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J. Appenzeller et al.,
IEEE TED, Dec. 2005

Source bandgap truncates thermal distribution—> steep S.S.

Must cross bandgap: tunneling=> low I,
Fix (??): GaSb/InAs broken-gap heterojunction



unnel FETs: are prospects good ?

P-GaSb N-InAs Gashb

InAs

Useful devices must be small: short gate—> thin channel
Quantization shifts band edges—> tunnel barrier

Confinement also increases effective masses

° . zm*E i 1/2
Transmission = exp(—2aT pgrrier), Where a = ( ”“;”er)

~10% for a 2nm barrier, 1% for a 4nm barrier

What actual on-current might we expect ?




T-FET on-currents are low, T-FET logic Is slow

NEMO simulation:
GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ ¢,=12, 12nm L,
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(EOT scaling)

Low current e ey How to increase
-> slow logic © e 01 03 05 o7 on-current?




Increasing the on-current

Trick #1: (110) confinement, [110] transport ETEEELNEZIE

Reduces tunnel barrier height

Reduces hole mass

Trick #2 : channel heterojunction P. Long et al., EDL 3/2016

Reduces tunnel barrier thickness

AddS resonant state Avci& Young, (Intel) 2013 IEDM

Trick #3:source heterojunction S. Brocard, et al., EDL, 2/2014

Reduces tunnel barrier thickness

Adds resonant state



P. Long et al., EDL 3/2016

gives more on-current than
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larger hole confinement mass—> smaller barrier-> more current
smaller hole transport mass— more current




Heterojunctions increase the

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016
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Added heterojunctions—> greater built-in potential->greater field-> thinner barrier



Heterojunctions increase the

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016
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Added heterojunctions—> greater built-in potential->greater field-> thinner barrier



Heterojunctions increase the

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016
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Role of the resonant bound states: ON-state
local density of states, 1/eV
ON-state Vg=0. 12V
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On-state: bound states increase transmission



Role of the resonant bound states: OFF-state

OFF-state Vg=0V

* Phonon scattering:

* Off-sate: evanescent tails of bound states = leakage between two states
- Keep the bound state energies near the well edge energies



L,=30nm: |, limited
by scattering

scattering
ballistic

L,=15nm: |4 limited
by S/D tunneling
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At 30nm L, V;,, must be increased ~0.07V to maintain on/off ratio
At 15nm L, on/off ratio limited by S/D tunneling

Simulations use 220meV/nm optical deformation constant, consistent with £=1.1x10> cm?V-1s™,



Leakage at L ,=15nm

Local current density
(absolute value of current)
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V,; (close to off): current

V,,: current limited by
limited by S/D tunneling

phonon scattering



Phonon-Assisted Tunneling:
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—ballistic
- —110meV/nm

~_
=
~
<
c
)
=
-]
O

0.1
Gate Voltage(V)

3HJ-TFET

V,, not shifted

N —
.

scattering

— 220meV/nm
—110meV/nm
—ballistic

0 0.05 0.1 0.15
Gate voltage(V)

$.S. and | . increased with intensity of phonon scattering



Phonon-Assisted Tunneling: TFET vs. 3HJ-TFET

3HJ ballistic
3HJ 220meV/nm

TFET ballistic
1 TFET 220meV/nm

V,, shifted

0.2
Gate Voltage(V)

Even with P.A.T., 3HJ design provides much larger 1., than TFET




Noise margin sets a minimum threshold voltage

Need high voltage gain dV,./dV; at -witching oint

ut
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at Vin=V ut- VDD/2
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Er4rain Should be below E; at switching point

Need low output conductance when biased at switching point
output conductance: from drain-source reverse injection
to avoid : need drain Fermi level below channel conduction band
must decrease (V,-V,, ) - increase V,,
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Increasing the threshold voltage:
Improves the noise margin
Reduces /. Also reduces I/



E

should be below E, at switching point

F.drain

Need low output conductance when biased at switching point
output conductance: from drain-source reverse injection
to avoid : need drain Fermi level below channel conduction band
must decrease (V,-V,, ) - increase V,,

b) SP 2

Vth increased |
Xx mV

Increasing the threshold voltage:
Improves the noise margin
Reduces /. Also reduces I/




Increasing V,, Increases noise margin
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SP1:
FET not saturated —>large dl,/dV,s—=2low gain, small noise margin

SP2:

V,, increased 20 mV->FET is just saturated.
Small dI,/dV=> large gain, large noise margin

Increasing V,,, deceases I, from 106 A/m to 60A/m at V,=0.08V




Tunnel FET Design for High-Current, 120 mV Operation

Low <nergy computing
is low-\ nltage computing

MOSFETSs:
60 mV/dec.
set minimum ~50L ™V operation.

Tunnel FETs:

1.8nm tunnel
barrier

micreased junction field .esonant states.

>50% tunneling prob-.oility; full energy range
N-TFET & PTFET d~signs.

Designs using < miconductors with good high-K's

Future we.k:
modeli-.g leakage: scattering, defects.




(end)



P-Channel designs

J. Huang et al., in review (also arXiv preprint 1605.07166)
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6.1 A design:
No demonstrated high-quality dielectrics

InP-based design:

channel is InAs/InGaAs/InP

Some unpublished UCSB data
suggesting good high-K interfaces
on p-type InGaAs

(Chobpattana, Stemmer)

working to verify now

Simulations: (103 A/m /5., 300 mV V)
6.1 A design: 580 A/m [,
comparable to N-TFET
InP design: not yet simulated

P-TFET performance is similar to that of the N-TFET

J.Z. Huang, et al, J-EDS, Vol 4, No.6, Nov 2016



Designs compatible with high-quality dielectrics

P. Long et al., 2016 IEEE IPRM conference

(InAs), _ (AISb), I

6.1 A design:
No demonstrated high-quality dielectrics

InP-based design:

channel is InAs/InGaAs/InP

high-quality dielectrics for all of these

Chobpattana, Stemmer, APL, 2014.

MOSFETs: 61 mV/dec. InAs,
65mV/dec. InGaAs
67mV/dec. InP

Simulations: (103 A/m /5., 300 mV V)
InP design: 380 A/m .
6.1 A design: 800 A/m [
(need to improve design)
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Triple-heterojunction design can be realized with high-quality dielectrics.

Present designs can be further improved.



Performance comparisons (ideal ballistic case)

Design Voo relative switching | /,,@ speed F.O.M.
energy V2 103 A/m i | 1,/ Vip
Si NMOS (experimental) | 700mV |1 ~1000 A/m | ~1400 S/m
Si NMOS (simulated) 00mV |1 4080 A/m 5830 S/m
GaSb/InAs TFET 300 mV | 0.18 32 A/m 107 S/m
GaSb/InAs TFET 70 mV 0.01 0.34 A/m 4.86S/m
3HJ-TFET; 0.3V design 300 mV |0.18 800 A/m 2670 S/m
3HJ-TFET; 70mV design | 70 mV 0.01 61 A/m 871S/m

70 mV operation->» 100:1 less switching energy than 700 mV CMOS

3HJ TFET @ 70 mV: 6.7:1 slower than CMOS
GaSb TFET @70 mV: 1200:1 slower than CMOS

Caveats:

Simulations ignore scattering: with it, what performance will we then obtain ?
Structure is complex: can we make it ?
Can we reduce threshold variations, or at least compensate for them ?



