A Tunnel FET Design for High-Current, 120 mV Operation

- P. Long, J. Z. Huang, M. Povolotskyi, J. Charles, T. Kubis, G. Klimeck, **Purdue University**
- D. Verreck, Imec, KU Leuven
- M. J.W. Rodwell, University of California, Santa Barbara
- B. H. Calhoun, University of Virginia, Charlottesville

What does VLSI need ?

Low voltage low switching energy $CV_{DD}^2/2$.

Large on-current small delay CV_{DD}/I .

Low leakage current thermal: $I_{off} \propto \exp(-qV_{DD}/kT)$ want low V_{DD} yet low I_{off} .

Want: low supply voltage → Steeper than 60mV/dec below threshold

→ Large *dI/dV* above threshold

Tunnel FETs: truncating the thermal distribution

Source bandgap truncates thermal distribution \rightarrow steep S.S. \checkmark Must cross bandgap: tunneling \rightarrow low I_{ON} \checkmark Fix (??): GaSb/InAs broken-gap heterojunction

Tunnel FETs: are prospects good ?

Useful devices must be small: short gate \rightarrow thin channel Quantization shifts band edges \rightarrow tunnel barrier Confinement also increases effective masses Transmission $\cong exp(-2\alpha T_{barrier})$, where $\alpha \cong \frac{(2m^*E_{barrier})^{1/2}}{\hbar}$ ~10% for a 2nm barrier, 1% for a 4nm barrier

What actual on-current might we expect ?

T-FET on-currents are low, T-FET logic is slow

NEMO simulation:

GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ ε_r =12, 12nm L_a

Increasing the on-current

Trick #1: (110) confinement, [110] transport

P. Long et al., EDL 3/2016

Reduces tunnel barrier height

Reduces hole mass

Trick #2: channel heterojunction

P. Long et al., EDL 3/2016

Reduces tunnel barrier thickness

Adds resonant state Avci & Young, (Intel) 2013 IEDM

Trick #3: source heterojunction

Reduces tunnel barrier thickness

Adds resonant state

S. Brocard, et al., EDL, 2/2014

P. Long *et al.*, EDL 3/2016

[110] gives more on-current than [100]

high confinement mass low transport mass

low confinement mass high transport mass

P. Long *et al.*, EDL 3/2016

[110] gives more on-current than [100]

larger hole confinement mass→ smaller barrier→ more current smaller hole transport mass→ more current

Heterojunctions increase the junction field

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016

Added heterojunctions \rightarrow greater built-in potential \rightarrow greater field \rightarrow thinner barrier

Heterojunctions increase the tunneling probability

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016

Added heterojunctions \rightarrow greater built-in potential \rightarrow greater field \rightarrow thinner barrier

Heterojunctions increase the on-current

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL 3/2016

Added heterojunctions \rightarrow greater built-in potential \rightarrow greater field \rightarrow thinner barrier

Role of the resonant bound states: ON-state

local density of states, 1/eV

On-state: bound states increase transmission

Role of the resonant bound states: OFF-state

- Phonon scattering:
 - Off-sate: evanescent tails of bound states → leakage between two states
 → Keep the bound state energies near the well edge energies

L_g=30nm: I_{off} limited L_g=15nm: I_{off} limited by scattering by S/D tunneling

At 30nm L_g , V_{DD} must be increased ~0.07V to maintain on/off ratio At 15nm L_a , on/off ratio limited by S/D tunneling

Simulations use 220meV/nm optical deformation constant , consistent with μ =1.1x10⁵ cm²V⁻¹s⁻¹.

Leakage at L_g=15nm

Local current density (absolute value of current)

V_{g1} (close to off): current limited by S/D tunneling

V_{g2}: current limited by phonon scattering

Phonon-Assisted Tunneling: 3HJ-TFET

V_{th} shifted V_{th} not shifted 10³ 10³ 60mVldec Current(A/m) 10¹ 10¹ stronger stronger scattering scattering 10⁻¹ 10⁻¹ 220meV/nm ballistic 110meV/nm 110meV/nm GomVidec 10⁻³ 10⁻³ ballistic 220meV/nm 0.15 0.05 0.1 0.1 0.2 0 O Gate Voltage(V) Gate voltage(V)

S.S. and I_{off} increased with intensity of phonon scattering

Phonon-Assisted Tunneling: TFET vs. 3HJ-TFET

Even with P.A.T., 3HJ design provides much larger I_{ON} than TFET

Noise margin sets a minimum threshold voltage

Need high voltage gain dV_{out}/dV_{in} at switching point

$$Gain = dV_{out}/dV_{in} = \frac{dI_D/dV_{GS}}{dI_D/dV_{DS}}$$

 \rightarrow FET I_D-V_{DS} curve should be saturated (flat) at the switching point

E_{F,drain} should be below E_c at switching point

Need low output conductance when biased at switching point output conductance: from drain-source reverse injection to avoid : need drain Fermi level below channel conduction band must decrease $(V_{as}-V_{th}) \rightarrow increase V_{th}$

Increasing the threshold voltage: Improves the noise margin Reduces I_{ON}. Also reduces I_{OFF}

E_{F,drain} should be below E_c at switching point

Need low output conductance when biased at switching point output conductance: from drain-source reverse injection to avoid : need drain Fermi level below channel conduction band must decrease $(V_{as}-V_{th}) \rightarrow increase V_{th}$

Increasing the threshold voltage: Improves the noise margin Reduces I_{ON}. Also reduces I_{OFF}

Increasing V_{th} increases noise margin

SP1:

FET not saturated \rightarrow large dI_D/dV_{DS} \rightarrow low gain, small noise margin

SP2: V_{th} increased 20 mV \rightarrow FET *is* just saturated. Small $dI_{\text{D}}/dV_{\text{DS}}$ \rightarrow large gain, large noise margin Increasing V_{th} deceases I_{on} from 106 A/m to 60A/m at V_{DD} =0.08V

Tunnel FET Design for High-Current, 120 mV Operation

Low energy computing is low-voltage computing

MOSFETs:

Source all the sec based of the sec base Designs using semiconductors with good high-K's.

Future wc. k: modeling leakage: scattering, defects.

InAs widegap channel

GaSk

P+ widega sou

Ш

Iriple TFE

[011] t [011]

(end)

P-Channel designs

J. Huang *et al.*, in review (also arXiv preprint 1605.07166)

6.1 Å design: No demonstrated high-quality dielectrics

InP-based design: channel is InAs/InGaAs/InP Some unpublished UCSB data suggesting good high-K interfaces on p-type InGaAs (Chobpattana, Stemmer) working to verify now

Simulations: (10⁻³ A/m I_{OFF}, 300 mV V_{DD}) 6.1 Å design: 580 A/m I_{on.} comparable to N-TFET InP design: not yet simulated.

P-TFET performance is similar to that of the N-TFET

J.Z. Huang, et al, J-EDS, Vol 4, No.6, Nov 2016

Designs compatible with high-quality dielectrics

P. Long et al., 2016 IEEE IPRM conference

6.1 Å design: No demonstrated high-quality dielectrics

InP-based design: channel is InAs/InGaAs/InP high-quality dielectrics for all of these Chobpattana, Stemmer, APL, 2014. MOSFETs: 61 mV/dec. InAs, 65mV/dec. InGaAs 67mV/dec. InP

Simulations: (10⁻³ A/m I_{OFF}, 300 mV V_{DD}) InP design: 380 A/m I_{on}. 6.1 Å design: 800 A/m I_{on}. (need to improve design)

Triple-heterojunction design can be realized with high-quality dielectrics. Present designs can be further improved.

Performance comparisons (ideal ballistic case)

L_g=30nm

Design	V _{DD}	relative switching energy ∝V _{DD} ²	I _{on} @ 10⁻³ A/m I _{off}	speed F.O.M. I _{on} /V _{DD}
Si NMOS (experimental)	700 mV	1	~1000 A/m	~1400 S/m
Si NMOS (simulated)	700 mV	1	4080 A/m	5830 S/m
GaSb/InAs TFET	300 mV	0.18	32 A/m	107 S/m
GaSb/InAs TFET	70 mV	0.01	0.34 A/m	4.86 S/m
3HJ-TFET; 0.3V design	300 mV	0.18	800 A/m	2670 S/m
3HJ-TFET; 70mV design	70 mV	0.01	61 A/m	871 S/m

70 mV operation → 100:1 less switching energy than 700 mV CMOS 3HJ TFET @ 70 mV: 6.7:1 slower than CMOS GaSb TFET @70 mV: 1200:1 slower than CMOS

Caveats:

Simulations ignore scattering: with it, what performance will we then obtain ? Structure is complex: can we make it ? Can we reduce threshold variations, or at least compensate for them ?