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Want:
low supply voltage
→ Steeper than 60mV/dec below threshold 
→ Large dI/dV above threshold

What does VLSI need ?

Low voltage
low switching energy CVDD

2/2 .

Low leakage current
thermal: Ioff∝exp(-qVDD/kT)
want low VDD yet low Ioff .

Large on-current
small delay CVDD /I .
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Tunnel FETs: truncating the thermal distribution

Source bandgap truncates thermal distribution steep S.S.

T-FET

MOSFET

Must cross bandgap: tunneling low ION

Fix (??): GaSb/InAs broken-gap heterojunction 

J. Appenzeller et al., 
IEEE TED, Dec. 2005



✘
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Tunnel FETs: are prospects good ?

Useful devices must be small: short gate→ thin channel

Quantization shifts band edges→ tunnel barrier

Confinement also increases effective masses

Transmission ≅ 𝒆𝒙𝒑(−𝟐𝜶𝑻𝒃𝒂𝒓𝒓𝒊𝒆𝒓), where 𝜶 ≅
(𝟐𝒎∗𝑬𝒃𝒂𝒓𝒓𝒊𝒆𝒓)

𝟏/𝟐

ℏ
~10% for a 2nm barrier, 1% for a 4nm barrier  

What actual on-current might we expect ?
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T-FET on-currents are low, T-FET logic is slow
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NEMO simulation:
GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick dielectric @ er=12, 12nm Lg
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Experimental:
InGaAs heterojunction HFET;
Dewey et al, 
2011 IEDM,
2012 VLSI Symp.

~15 mA/mm @0.7V

Low current
→ slow logic

How to increase 
on-current?
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Increasing the on-current

        

tionheterojunc source :#3Trick 

tionheterojunc channel :#2Trick 

          

t  transpor0]1[1 t,confinemen (110)  :#1Trick P. Long et al., EDL  3/2016

S. Brocard, et al., EDL, 2/2014

Reduces tunnel barrier height

Reduces hole mass

Reduces tunnel barrier thickness

Adds resonant state

Reduces tunnel barrier thickness

Adds resonant state

Avci & Young, (Intel) 2013 IEDM

P. Long et al., EDL  3/2016
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[110] gives more on-current than [100]

high confinement mass
low transport mass

low confinement mass
high transport mass

Valence 
Band

P. Long et al., EDL  3/2016
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[110] gives more on-current than [100]

larger hole confinement mass→ smaller barrier→ more current
smaller hole transport mass→ more current

larger tu
n

n
el b

arrier

sm
aller tu
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el b
arrier

smaller m* larger m*

thinner barrier

greater transmission

P. Long et al., EDL  3/2016
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Heterojunctions increase the junction field

Added heterojunctions→ greater built-in potential→greater field→ thinner barrier

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL  3/2016
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Heterojunctions increase the tunneling probability

Added heterojunctions→ greater built-in potential→greater field→ thinner barrier

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL  3/2016
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Heterojunctions increase the on-current

Added heterojunctions→ greater built-in potential→greater field→ thinner barrier

Source heterojunction: S. Brocard, et al., EDL, 2/2014; Channel heterojunction: P. Long et al., EDL  3/2016

Ballistic simulations 
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Role of the resonant bound states: ON-state

On-state: bound states increase transmission

10-1
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local density of states, 1/eV

Transmission 
> 50% over 
80meV



13

• Phonon scattering:

• Off-sate: evanescent tails of bound states  leakage between two states
→ Keep the bound state energies near the well edge energies

Role of the resonant bound states: OFF-state
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Lg=30nm: Ioff limited 

by scattering

scattering

At 30nm Lg , VDD must be increased ~0.07V to maintain on/off ratio
At 15nm Lg , on/off ratio limited by S/D tunneling 

S/D tunneling 

Lg=15nm: Ioff limited 
by S/D tunneling

0.04

Simulations use 220meV/nm optical deformation constant , consistent with m=1.1x105 cm2V-1s-1. 
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Local current density
(absolute value of current)

Leakage at Lg=15nm

A/(m*eV)

Vg1 (close to off): current 
limited by S/D tunneling

Vg2: current limited by 
phonon scattering

S/D tunneling Phonon scattering
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Phonon-Assisted Tunneling: 3HJ-TFET

S.S. and Ioff increased with intensity of phonon scattering 

Vth shifted Vth not shifted
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Phonon-Assisted Tunneling: TFET vs. 3HJ-TFET

Even with P.A.T., 3HJ design provides much larger ION than TFET

Vth shifted
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Noise margin sets a minimum threshold voltage

Need high voltage gain dVout/dVin at switching point

→ FET ID-VDS curve should be saturated (flat) at the switching point

Vin=VDD

Vin=3/4VDD

Vin=1/2VDD

Vin=1/4VDD

Vin=0

Vin=1/4VDD

Vin=1/2VDD

Vin=3/4VDD

Vout

ID

Gain = dVout/dVin = 
dID/dVGS

dID/dVDS
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EF,drain should be below Ec at switching point

Need low output conductance when biased at switching point
output conductance: from drain-source reverse injection
to avoid : need drain Fermi level below channel conduction band
must decrease (Vgs-Vth ) → increase Vth

Increasing the threshold voltage:
Improves the noise margin 
Reduces ION. Also reduces IOFF

✘ 
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EF,drain should be below Ec at switching point

Need low output conductance when biased at switching point
output conductance: from drain-source reverse injection
to avoid : need drain Fermi level below channel conduction band
must decrease (Vgs-Vth ) → increase Vth

Increasing the threshold voltage:
Improves the noise margin 
Reduces ION. Also reduces IOFF

Vth increased 
xx mV
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Increasing Vth increases noise margin

SP1: 
FET not saturated large dID/dVDSlow gain,  small noise margin

SP2: 
Vth increased 20 mVFET is just saturated. 
Small dID/dVDS large gain, large noise margin

Increasing Vth deceases Ion from 106 A/m to 60A/m at VDD=0.08V
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Tunnel FET Design for High-Current, 120 mV Operation

Low-energy computing
is low-voltage computing

MOSFETs: 
60 mV/dec.
set minimum ~500mV operation.

Tunnel FETs:
subthreshold swing < 60 mV/dec.
small on-currents→ slow logic
~120mV operation→ extremely slow logic

Triple-heterojunction FETs:
increased junction field, resonant states.
>50% tunneling probability; full energy range
N-TFET & PTFET designs. 
Designs using semiconductors with good high-K's.

Future work:
modeling leakage: scattering, defects.



(end)
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P-Channel designs

P-TFET performance is similar to that of the N-TFET 

J. Huang  et al., in review (also arXiv preprint 1605.07166)

6.1 Å design:
No demonstrated high-quality dielectrics

InP-based design:
channel is InAs/InGaAs/InP
Some unpublished UCSB data 
suggesting good high-K interfaces
on p-type InGaAs
(Chobpattana, Stemmer)
working to verify now 

Simulations: (10-3 A/m IOFF, 300 mV VDD)
6.1 Å design: 580 A/m Ion.

comparable to N-TFET 
InP design:  not yet simulated.

J.Z. Huang, et al, J-EDS, Vol 4, No.6, Nov 2016
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Designs compatible with high-quality dielectrics

Triple-heterojunction design can be realized with high-quality dielectrics.

Present designs can be further improved.

P. Long et al., 2016 IEEE IPRM conference 

6.1 Å design:
No demonstrated high-quality dielectrics 

InP-based design:
channel is InAs/InGaAs/InP
high-quality dielectrics for all of these
Chobpattana, Stemmer, APL, 2014.
MOSFETs: 61 mV/dec. InAs, 

65mV/dec. InGaAs
67mV/dec. InP

Simulations: (10-3 A/m IOFF, 300 mV VDD)
InP design: 380 A/m Ion.
6.1 Å design: 800 A/m Ion.

(need to improve design)
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Performance comparisons (ideal ballistic case)

70 mV operation→ 100:1 less switching energy than 700 mV CMOS
3HJ TFET @ 70 mV: 6.7:1 slower than CMOS
GaSb TFET @70 mV: 1200:1 slower than CMOS

Design VDD relative switching 
energy ∝VDD

2

Ion@ 
10-3 A/m Ioff

speed F.O.M. 
Ion/VDD

Si NMOS (experimental) 700 mV 1 ~1000 A/m ~1400 S/m

Si NMOS (simulated) 700 mV 1 4080 A/m 5830 S/m

GaSb/InAs TFET 300 mV 0.18 32 A/m 107 S/m

GaSb/InAs TFET 70 mV 0.01 0.34 A/m 4.86 S/m

3HJ-TFET; 0.3V design 300 mV 0.18 800 A/m 2670 S/m

3HJ-TFET; 70mV design 70 mV 0.01 61 A/m 871 S/m

Caveats:
Simulations ignore scattering: with it, what performance will we then obtain ?
Structure is complex: can we make it ?
Can we reduce threshold variations, or at least compensate for them ?

Lg=30nm


