High-Current InP-Based Triple Heterojunction Tunnel Transistors

Pengyu Long¹, Jun Z. Huang¹, Michael Povolotskyi¹, Devin Verreck^{1,3}, Gerhard Klimeck¹, Mark. J.W. Rodwell²

¹Network for computational nanotechnology, Purdue University, West Lafayette, IN 47906

²ECE Department, University of California, Santa Barbara, CA 93106-95603

³Department of Electrical Engineering, imec, KU Leuven, 3001 Leuven, Belgium Email:

davidlong180@gmail.com

Abstract— We report the design and simulated performance of a GaAsSb/GaSb/InAs/InP n-type triple heterojunction (3-HJ) tunnel field-effect transistor (TFET). GaAsSb/GaSb source and InAs/InP channel HJs both increase the field imposed upon the tunnel junctions and introduce two resonant bound states. The tunneling probability, and hence the transistor on-current, are thereby greatly increased. The devices were simulated using a non-equilibrium Green function quantum transport approach and the k.p method within NEMO5. With 10^{-3} A/m (*I*OFF) and a 0.3 V power supply *V*_{DD}, we simulate 380 A/m ON-current (*I*ON) at 30-nm gate length (*L*g) and 275 A/m at 15-nm *L*g. Unlike a previously-reported high-current AlGaSb/GaSb/InAs/InGaAsSb 3-HJ design, the GaAsSb/GaSb/InAs/InP design employs channel materials to which high-quality, low-interface-state-density gate dielectrics have been demonstrated. *Keywords*—Tunnel FET, Tunnel transistors.

Future VLSI devices will require low $CV_{DD}^2/2$ switching energy, large on-currents (I_{ON}), and small offcurrents (I_{OFF}). Low switching energy requires a low supply voltage V_{DD} , yet reducing V_{DD} typically increases I_{OFF} and reduces the I_{ON}/I_{OFF} ratio. Though tunnel FETs (TFETs) have steep subthreshold swings and can operate at a low V_{DD} , their I_{ON} is limited by low tunnel probability. This low I_{ON} will result in large CV_{DD}/I delay and slow operation.

To obtain high on-currents, we had previously proposed [1] an AlGaSb/GaSb/InAs/InAlAsSb tripleheterojunction (3HJ) tunnel FET, the design using materials lattice-matched to InAs. In this device, (11 0) confinement reduces both the hole tunnel effective mass and the tunnel barrier energy at the GaSb/InAs interface, both increasing the tunnel probability. The tunnel probability was further increased by source [2] and channel heterojunctions. The heterojunctions increase the junction built-in potential and field, hence reduce the tunnel distance. Further, the heterojunctions introduce two resonant states; in combination with the reduced tunnel distance, the tunnel probability increased from ~3% for a reference GaSb/InAs TFET design to > 50% over the conduction window between the source Fermi level and the conduction-band edge. I_{on} is thereby greatly increased, by 26:1, from 30A/m for the reference GaSb/InAs design, to 750 A/m for the AlGaSb/GaSb/InAs/InAlAsSb design, given 30nm L_g , 10⁻³ A/m I_{off} , and 0.3V V_{DD} . Despite the high simulated I_{ON} , the materials selection is problematic; critically, no low-interface-trap density gate dielectrics have been demonstrated for InAlAsSb. In contrast, very low-interface-trap density gate dielectrics have been demonstrated for InAs, InGaAs, and InP [3,4,5]. Here we report high-current 3-HJ TFET design using InAs/InP channel materials. Except for a thin strained GaSb/InAs tunnel junction, the materials are lattice-matched to InP, and the channel materials are compatible with established high-quality dielectrics.

The use of InP channel materials forces the GaSb/InAs tunnel junction layers to be strained; first we consider design of this junction. In the $(1\bar{1}0)$ orientation, at 3nm body thickness (T_b) , a GaSb/InAs junction, if unstrained, has a low 0.078 eV barrier energy, but a high off-state tunneling probability (fig 1) because of the low InAs conduction-band mass (m*) and low InAs bandgap (Eg). If GaSb/InAs are grown lattice-matched to InP, the compressive biaxial strain will increase m* and E_g , therefore reducing I_{OFF} , but tunnel barrier height will also increase, therefore reducing the tunnel probability and I_{ON} compared to unstrained InAs/GaSb TFET (Fig. 2).

The triple HJ TFET decreases the tunnel distance and adds two resonant states, both increasing I_{ON} . The high m* and E_g of InP channel also reduces I_{OFF} . A graded source HJ further decreases the tunnel distance; its design includes a GaAs_{0.56}Sb_{0.44} source ($N_A=2\times10^{19}$ cm⁻³), an 1.5 nm GaAs_{0.38}Sb_{0.62} ($N_A=5\times10^{19}$ cm⁻³) grade layer, a 3 nm GaSb ($N_A=5\times10^{19}$ cm⁻³) P-layer, a 3 nm InAs undoped N-layer, and an undoped InP channel. The TFETs have double gates (e.g. are finFETs) with 2.56nm thick gate dielectric ($\varepsilon_{r,ox}=9$), and 3nm thick channels. Resonant states are located in the source GaSb well and channel InAs well (Fig. 4b). Fig. 5a) compares the band diagram of a triple HJ TFET with a strained GaSb/InAs TFET in the on-state. The depletion region is reduced from both source and channel side, so tunnel distance reduced from 3.9nm to 1.4nm at 30nm L_g, and from 5.2nm to 2.5nm at 15nm L_g.

The devices are studied using NEMO5 [6] with quantum transmitting boundary method [7], using eightband k.p method with strain [8, 9]. The device shows 12mV/dec. S.S. and380A/m ballistic I_{ON} at 30nm L_G , and shows 30mV/dec S.S, and 275A/m I_{on} at 15 nm L_G (Fig. 6). Phonon-assisted tunneling will increase I_{OFF} , an effect not modeled here, but modeled in [2]. Note that if the on-current is adequate, even a 53mV/dec TFET will save 50% in energy compared to a MOSFET [10]. A detailed analysis of I_{OFF} will follow.

[1] P. Long, et al., 2016 DRC [2] M. G. Pala, et al., IEEE J. EDS, vol.3, no.3 (2015) [3] S Lee et al., 2014 VLSI Symp. [4] C. Y. Huang et al., 2014 Lester Eastman Conf. [5] C. Y. Huang et al., IEDM (2015) [6] J.E.

Fonseca, et al., J. Comput. Electron, vol.12, no.4, [7] M. Luisier, et al. Phys. Rev. B, vol. 74, no. 20 (2006), [8] T. B. Bahder, Phys. Rev. B, vol. 41, no. 17, (1990). [9] I. Vurgaftman, et al, J. Appl. Phys. vol. 89, no. 11, 2001. [10] I. A. Young, et al, IEDM (2015).

Acknowledgements: The nanoHUB.org computational resources are funded by the US NSF grant Nos. EEC-0228390, EEC-1227110, EEC-0634750, OCI-0438246, OCI-0832623 and OCI-0721680. This work is supported by the NSF Grant No. 1509394. NEMO5 developments are supported by OCI-0749140 and by Intel Corp. D.Verreck gratefully acknowledges support from IWT-Vlaanderen and FWO-Vlaanderen

Fig. 1. Band diagram (a) and transmission probability (b) Fig. 2. Band diagram (a) and transmission probability of a 3nm thick (110)-confined GaSb/InAs UTB tunnel (b) of a unstrained GaSb/InAs TFET and one biaxially FET in OFF-state bias with $L_g=15$ nm. The transport is strained to InP at $L_g=15$ nm. along [110].

Fig. 3. Device cross-section of a TFET with a GaSb/InAs tunnel heterojunction (a), a InAs/InP channel heterojunction (b), (c) with both source (GaAsSb/GaSb) and channel heterojunctions In (d), the source heterojunction can be graded.

0.5 a) 0.5 b) Energy (eV) ٥ strained GaSb/InAs -0.5 -0.5 triple HJ 0 5 10 15 10⁻² 104 100 x(nm) **Transmission**

Fig. 4. a) Energy resolved current density b) Local Fig. 5. Band diagram (a) and transmission probability density of states in on-state bias of a (110)-confined (b) of a (110)-confined GaSb/InAs TFET and a tripletriple-HJ TFET. Resonant states are circled.

	L _G =30nm		L _G =15nm	
	Tunnel barrier (nm)	I _{ON} (A/m)	Tunnel barrier (nm)	I _{ON} (A/m)
Unstrained GaSb/InAs	0.9	240	1.6	
Strained GaSb/InAs	3.9	25	5.2	8
channel HJ	2.5	165	2.6	120
Triple HJ	1.4	380	1.5	275

Table 1: I_{ON} and tunneling distance for (11 0) GaSb/InAs HJ, channel HJ, and triple-HJ TFETs.

HJ TFET with source grading.

Fig. 6. Transfer characteristics of $(1\overline{1}0)$ confined TFETs for $L_G=30$ nm (a) and $L_G=15$ nm (b).