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Abstract— GaSb/InAs heterojunction tunnel FETs are
strong candidates in building future low-power ICs, as they
could provide both steep subthreshold swing and large
on-state current (ION). However, at short-channel lengths,
they suffer from large tunneling leakage originating from
the small bandgap and small effective masses of the InAs
channel. As proposed in this paper, this problem can be
significantly mitigated by reducing the channel thickness,
meanwhile retaining a thick source-channel tunnel junction,
thus forming a design with a nonuniform body thickness.
Because of the quantum confinement, the thin InAs channel
offers a large bandgap and large effective masses, reduc-
ing the ambipolar and source-to-drain tunneling leakage
at off-state. The thick GaSb/InAs tunnel junction, instead,
offers a low tunnel barrier and small effective masses,
allowing a large tunnel probability at on-state. In addition,
the confinement-induced band discontinuity enhances the
tunnel electric field and creates a resonant state, further
improving ION. Atomistic quantum transport simulations
show that ballistic ION = 284 A/m is obtained at 15-nm
channel length, I OFF = 1 x 10–3 A/m, and VDD = 0.3 V, while
with uniform body thickness, the largest achievable I ON is
only 25 A/m. Simulations also indicate that this design is
scalable to sub-10-nm channel length.

Index Terms— Heterojunction tunnel FETs (TFETs),
nonuniform body thickness, scalable TFETs.

I. INTRODUCTION

TUNNEL FET (TFET), a promising replacement of clas-
sical MOSFET for future low-power ICs, has been inten-

sively studied over a decade. The advantages of TFET come
from its steep subthreshold swing (SS) that overcomes the
60 mV/decade limit of a conventional MOSFET, allowing
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substantial supply voltage (VDD) scaling [1]. However, because
of low tunnel probability, the steep SS usually occurs at very
low current level [2], [3]. This leads to insufficient ON-state
current (ION) and thus large switching delay (CVDD/ION).
Various approaches have been proposed to improve the
low ION. In particular, GaSb/InAs heterojunction-based
TFETs [4]–[10] can considerably boost ION due to their
broken/staggered-gap band alignment.

However, as the channel length scales to sub-20 nm as pro-
jected by International Technology Roadmap for Semiconduc-
tors (ITRS) for the next technology nodes [11], the GaSb/InAs
n-type TFETs suffer from large ambipolar and source-to-drain
tunneling leakage due to the small bandgap and the small
effective masses of the InAs channel. These leakages can
be reduced by reducing the body thickness [12], because the
bandgap and the effective masses of the InAs channel increase
as the body thickness decreases. Meanwhile, the large bandgap
and large effective masses also reduce the tunneling probability
across the tunnel junction. The resonant TFET with a reversed
InAs/GaSb heterojunction can have a steep SS at short gate
length [12], but the ION is limited by the narrow resonant
transmission peak [13]. The channel heterojunction design
with a large bandgap AlInAsSb alloy as the channel material
has also been proposed [14], [15] to mitigate the short-channel
effects. However, a good-quality dielectric on top of AlInAsSb
has not been experimentally demonstrated yet. Therefore, InP,
a material with a high-quality dielectric already demonstated,
has been investigated as the alternative channel material [16].
It is found that the lattice-mismatched InP channel imposes
biaxial compressive strain on the GaSb/InAs tunnel junction,
compromising the improvement.

In this paper, we show that, by reducing the InAs channel
body thickness meanwhile retaining a relatively large body
thickness at the source tunnel junction, the leakage can be
significantly reduced without compromising the large source
tunnel probability, thereby the scalability of GaSb/InAs TFETs
is greatly improved. We highlight some important simulation
details in Section II and then present the simulation results in
Section III for the uniform body thickness and in Section IV
for the nonuniform case. Device variabilities and nonidealities
are discussed in Section V. Finally, the conclusion is drawn in
Section VI.

II. DEVICE STRUCTURES AND SIMULATION METHOD

The structures of the GaSb/InAs ultrathin-body (UTB)
n-type TFETs are shown in Fig. 1. We consider double-
gate structures, since they provide better electrostatic con-
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Fig. 1. GaSb/InAs n-type TFETs with (a) conventional uniform
and (b) proposed nonuniform body thickness. The oxide and the gate
in (b) are conformal to the channel, so that the oxide thickness is equal
to that of (a). Here, Tch/Tox is the channel/oxide thickness, εox is the
oxide dielectric constant, Ls/Lg/Ld is the source/channel/drain length,
and Ns/Nd is the source/drain doping density. The extra parameters in
(b) are the source thickness Ts and the wide channel length Lw.

trol over the channel than the single-gate counterparts [17].
In practice, such structures can be realized by the 3-D FinFET
geometries [18]. The devices are simulated and optimized
by solving Poisson equation and open-boundary Schrödinger
equation [19] self-consistently within NEMO5 tool [20]. The
Hamiltonian employed is in the atomistic sp3d5s∗ tight-
binding (TB) basis, including spin-orbit coupling, with the
room temperature TB parameters fitted to the band structures
as well as the wave functions of density functional theory
calculations for better transferability [21], [22]. Due to the high
semiconductor-to-oxide barrier height [23], the oxide is treated
as an impenetrable potential barrier and only modeled in the
Poisson equation. However, at very thin body thicknesses, even
a small penetration of the wave function into the dielectric
might significantly increase the effective body thickness. The
physical body thickness would need to be accordingly adjusted
to obtain the desired bound state energies. Electron–phonon
scattering is neglected in the data presented. We have found in
simulations that at 15-nm channel length, IOFF due to source–
drain tunneling dominates over that arising from electron–
phonon scattering. This agrees with studies in [24]–[26], where
the impact of phonon scattering on the I–V characteristics of
InAs homojunction and GaSb/InAs heterojunction nanowire
TFETs was found to be very small due to the direct bandgaps
and the short-channel lengths (≤20 nm). The discrete nature
of dopants and bulk/interface defects is not considered in the
simulations; their effects will be discussed in Section V.

III. UNIFORM BODY THICKNESS

First, we analyze the conventional case with uniform body
thickness, as shown in Fig. 1(a). The band edges and the
effective masses of the UTB structures for different body
thicknesses are plotted in Fig. 2. Energy value of 0 eV
corresponds to the valence band edge of bulk InAs. The
calculated conduction band edge (Ec) of the InAs UTB has
a mismatch circa 0.2 eV with the experiment data [27],
but its variations with respect to the UTB thickness agree
well with the experiment.1 The mismatch could be due to

1The experimental data [27] reported energy difference between the lowest
conduction band state of InAs quantum well and the highest valence band
state of AlSb quantum well. To obtain from this data, the quantized state
energy of the InAs well with respect to the InAs bulk valence band edge,
the reported values were shifted up by the valence band offset between bulk
AlSb and InAs, equal to 0.18 eV [28], and, finally, adjusted by subtracting
the quantization energy of the heavy hole state in the AlSb quantum well,
equal to 0.03 eV in our TB calculation for a 5-nm well width.

Fig. 2. (a) Conduction and valence band edges (Ec and Ev) and
(b) electron and hole effective masses (m * e and m * h) of the GaSb
and InAs UTBs, as functions of the UTB thickness. The confinement is in
the [001] orientation and the effective masses are in the [100] orientation.

Fig. 3. (a) IDS–VGS characteristics (VDS = 0.3 V) of the uniform device
[Fig. 1(a)] as a function of the body thickness Tch. Confinement/transport
is in the [001]/[100] orientation. Lg = 15 nm, Tox = 1.8 nm, εox = 9.0,
Ns = –5 x 1019/cm3, and Nd = +2 x 1019/cm3. (b) ION–IOFF curves with
VDD = 0.3 V.

the experimental error (note that the experiment data have a
distribution) and that the measurement was performed at low
temperature (our TB parameters are at room temperature). It is
observed that the InAs UTB bandgap (InAs Ec–InAs Ev ) and
the tunnel barrier height (InAs Ec–GaSb Ev ) both increase
as the UTB thickness becomes smaller; the effective masses
(electron and hole) of the InAs UTB also increase significantly
as the UTB thickness decreases.

Therefore, the I–V characteristic of the device is a strong
function of the UTB thickness. Indeed, as shown in Fig. 3(a), a
large body thickness (Tch = 3.6 or 3 nm) leads to a large turn-
ON current, but also a large SS and a high IOFF. A small body
thickness (Tch = 1.8 nm) gives rise to a small SS and a low
IOFF, but a small turn-ON current. With IOFF = 1 × 10−3 A/m
and VDD = 0.3 V, the optimal body thickness for Lg = 15 nm
is around 2.4 nm, providing ION = 25 A/m [Fig. 3(b)]. This
is too low for any practical logic application.

IV. NONUNIFORM BODY THICKNESS

The proposed design that can overcome this dilemma is
shown in Fig. 1(b). Compared with Fig. 1(a), this design has
reduced body thickness only in part of the channel region (and
in the drain). Three parameters need to be optimized, i.e., Ts ,
Tch, and Lw . In this paper, we fix Ts to be 3.6 nm and then
optimize Tch and Lw to maximize ION. As shown in Fig. 4(a),
there is an optimal Lw for each Tch and the optimal Lw is
smaller for smaller Tch, which will be explained in a moment.
A tradeoff of Tch is also clearly observed, since a large Tch
does not have sufficiently large bandgap and effective masses
needed for the leakage suppression, while a small Tch would
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Fig. 4. (a) ION (at VDD = 0.3 V and IOFF = 1 x 10–3 A/m) of
the nonuniform design [Fig. 1(b)] for different values of Lw and
Tch, with fixed Ts = 3.6 nm. (b) Full IDS–VGS characteristics of the
Ts/Tch/Lw = 3.6/1.8/4 nm case in (a), in comparison with the uniform
3.6 nm and uniform 1.8 nm cases. All other device parameters are the
same as those in Fig. 3.

Fig. 5. Comparison of (a) band diagrams and (b) transmission functions
of the three cases in Fig. 4(b): uniform 3.6-nm body thickness, uniform
1.8-nm thickness, and nonuniform 3.6-/1.8-nm body thickness.

affect the ON-state transmission due to the large reflection at
the waveguide discontinuity. With Tch = 1.8 nm and Lw =
4 nm, we obtain the largest ION (284 A/m), which is more
than an order of magnitude larger than that of the uniform
case (25 A/m). The full IDS–VGS curve is further displayed in
Fig. 4(b) along with two uniform thickness cases, showing that
both steep SS and large turn-ON current are simultaneously
obtained in the nonuniform case.

The improvements can be better understood from the band
diagrams and the transmissions plotted in Fig. 5, where the
three cases in Fig. 4(b) are compared. Above the channel
Ec, the nonuniform 3.6/1.8 nm case has larger transmission
than the uniform 1.8 nm case, giving rise to its larger
turn-ON current. This is due to its smaller tunneling barrier
height and smaller effective masses at the tunnel junction.
Its transmission over channel Ec is even larger than the
uniform 3.6 nm case, benefiting from its larger tunneling
electric field and resonance-enhanced tunneling, both resulting
from the confined band offset. Below the channel Ec, the
nonuniform 3.6/1.8 nm case has steeper transmission slope
than the uniform 3.6 nm case, implying steeper SS. This is
partly due to the larger channel bandgap and larger channel
effective masses, partly due to the better electrostatics at the
channel-drain junction, and partly due to the smaller drain
Fermi degeneracy (the energy distance between the drain
Fermi level and the drain Ec).

The local density of states (LDOS) is further shown in
Fig. 6. Similar to the channel heterojunction design [14], [29],
the confined conduction band edges in the channel form a
quantum well, which creates a quasi-bound state. The energy

Fig. 6. LDOS (in logarithmic scale) of the optimized design in Fig. 4,
at (a) OFF-state and (b) ON-state. Band diagrams (dashed lines) and
contact Fermi levels (solid lines) are superimposed. The quasi-bound
states are highlighted (circles).

Fig. 7. IDS–VGS characteristics (VDS = 0.3 V) of the proposed
TFETs, in comparison with Si MOSFETs (also from quantum ballis-
tic simulations), for three channel lengths (Lg = 15, 12, and 9 nm).
(a) Ts/Tch/Lw = 3.6/1.8/4 nm for TFETs and Tch = 1.8 nm for MOS-
FETs. (b) Ts/Tch/Lw = 3.6/1.2/2.5 nm for TFETs and Tch = 1.2 nm for
MOSFETs.

level of this state needs to be aligned with the channel
conduction band edge at the ON-state, so that it enhances ION.
At the OFF-state, in order to reduce the phonon-assisted
tunneling (PAT) leakage, the energy of this state has to be
higher than the valence band edge at the source by at least
the optical phonon energy [30]. In the proposed designs, the
energy separation of ∼ 75 meV is maintained, that is signif-
icantly larger than the bulk optical phonon energy of InAs:
h̄ωop ≈30meV. Note that the energy of the quantized optical
phonon both in an InAs wire of ∼ 3×3 nm2 cross section [31]
and in an InAs UTB of 1.8 nm thickness [32] is almost the
same as in bulk, because the bulk optical phonon dispersion is
almost flat in k space. Therefore, for the short-channel devices
(Lg ≤ 15 nm) considered in this paper, the source-to-drain
direct tunneling leakage is much larger than the PAT leakage
and the ballistic simulation captures the dominant leakage
mechanism. In order to meet these requirements, Lw needs
to be adjusted for a given Tch, as shown in Fig. 4(a). In fact,
a smaller Tch leads to a larger confined band offset, and thus,
Lw needs to be reduced properly to shift the quasi-bound state
upward.

ITRS 2020 and 2023 technology nodes require channel
length Lg to be scaled to about 12 and 9 nm [11]. At such
short-channel lengths, the source-to-drain tunneling leakage
becomes more prominent. As compared in Fig. 7(a), when
Lg is reduced from 15 to 12 nm, ION of TFET drops from
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Fig. 8. Sensitivities of the IDS–VGS curve (VDS = 0.3 V) to the variations
of (a) Ts, (b) Tch, and (c) Lw, for optimized design in Fig. 4. The amount
of Ts and Tch variations is one monolayer (about ±0.3 nm) and the Lw
variation is ±0.5 nm.

284 to 106 A/m, while ION of Si MOSFET only drops from
49 to 41 A/m. When Lg is further scaled to 9 nm, the TFET
cannot provide a decent ON/OFF ratio and does not possess an
advantage over Si MOSFET. To improve the scalability, the
channel thickness (Tch) can be reduced from 1.8 to 1.2 nm
to enlarge the channel bandgap and channel effective masses.
As shown in Fig. 7(b), the SS of TFET degrades less, with
ION = 209 A/m (50 A/m) obtained at Lg = 12 nm (9 nm),
which is still considerably larger than ION = 47 A/m (31 A/m)
of Si MOSFET.

V. VARIABILITIES AND NONIDEALITIES

Fig. 8 shows the sensitivities of the I–V curve to the
geometry variations. We find that the I–V curve can tolerate
certain amount of Ts and Lw variations (under these variations,
the resonant state energies at OFF-state are checked and
found to be still higher than the source valence band edge
by at least 30 meV), it is, however, very sensitive to the
channel thickness (Tch) variations resulting in unacceptable
IOFF or ION level. We note that, given a few nanometer body
thickness, the dc characteristics and threshold voltage of both
uniform [Fig. 3(a)] and nonuniform [Fig. 8(b)] TFETs vary
strongly with the channel thickness. Given such geometries,
a viable VLSI TFET technology must control the channel
thickness to within a precision of a single atomic plane.
Techniques to obtain this precision in fabrication include
semiconductor growth by atomic layer epitaxy [33], or con-
fined lateral epitaxial overgrowth [34] within dielectric regions
formed by atomic layer deposition. Note that MOSFETs with
2.5-nm thickness InAs channel [35] and 1.5-/1-nm thick-
ness InGaAs/InAs channel [36] have been reported recently.
In addition, the proposed design concept can be generalized to
nanowire structures with nonuniform cross section. As shown
in [12], nanowire TFETs can relax the critical body thickness
of UTB TFETs.

Other possible variations in device dimensions, including
line edge roughness and surface roughness [37], [38], the ran-
dom dopant fluctuations (RDFs) [37], [39], and the steepness
of the thickness transition between Ts and Tch, may also impact
the device performance. Note that studies in [37] and [39]
report that the relative variation in the ON-current, as a result
of random source dopant variation, decreases as the TFET
body thickness or cross section becomes larger. In our devices,

the source thickness is 3.6 nm, which is larger than the best
uniform thickness case (2.4 nm), so our design will be less
sensitive to the RDF.

Fabrication nonidealities, such as the bulk and interface
defects, would also degrade the device performances through
trap-assisted tunneling (TAT) and Shockley–Read–Hall (SRH)
generation. The TAT affects SS [40], [41] and is a serious issue
for all III–V semiconductor-based MOSFETs and TFETs.
However, recently, there has been a significant progress in
fabricating high-quality dielectric/III–V semiconductor inter-
faces. For example, in [35], a 2.5-nm-thick InAs channel
MOSFET with a 0.7-/3-nm Al2OxNy /ZrO2 gate dielectric has
SS = 61mV/decade (at Lg = 1 μm and VDS = 0.1 V),
indicating low defect density, whether bulk or at the dielectric–
semiconductor interface. The SRH generation increases the
leakage current floor [40], [41]. The SRH leakage depends
on the intrinsic carrier concentration, which is proportional
to exp(−Eg/2kT ), where Eg is the bandgap, k is the Boltz-
mann’s constant, and T is the temperature [40]. Therefore,
even if the thin portion of the channel was to have a larger
bulk defect density, the SRH generation rate in this region
would be decreased because of the increased bandgap arising
from quantization.

VI. CONCLUSION

We have shown that by designing a nonuniform body
thickness, the ON/OFF current ratio and scalability of the
GaSb/InAs n-type TFETs can be greatly improved. The pre-
dictions, however, are based on ideal ballistic quantum trans-
port simulations, various leakage mechanisms and fabrication
nonidealities may degrade the device performances and need
to be checked in the future. It should also be emphasized
that such designs require precise control in fabrication of
the device dimensions, in particular the channel thickness.
To further improve the design, an additional nonuniformity
or heterojunction could be placed in the source side to form
devices akin to the triple-heterojunction designs [15], [16].
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