Short Course, IEEE BCICTS Conference, San Diego, October 14, 2018

Device, Circuit, and Systems Considerations for Highly Integrated 30-300GHz Wireless Systems

Mark Rodwell,

University of California, Santa Barbara

Why mm-wave wireless ?

Wireless networks: exploding demand.

Immediate industry response: 5G.

28, 38, 57-71(WiGig), 71-86GHz increased spectrum, extensive beamforming

Next generation (6G ??): above 100GHz..

greatly increased spectrum, massive spectral multiplexing

DOD applications: Imaging/sensing/radar, comms.

A very incomplete history of THz electronics

1950-1990: THz GaAs Schottky diodes in waveguide

Multipliers and mixers. Radio astronomy. Instruments. Spectroscopy.

1980's: THz spectroscopy using fs/ps pulsed lasers

ps/fs pulsed lasers, optical/electrical conversion, time-domain techniques "optics is fast; electronics is slow"

1985-95: ps pulses using GaAs NLTLs + diode sampling ICs 100GHz commercial sampling scopes, fast network analyzers.

1995-2010: THz transistors, THz ICs

Can we make transistors work at 1THz ? Abandon classical electrostatic barriers for quantum transitions ? Can circuit concepts work at 1THz ? (of course, just need $D << \lambda$!)

Dead end: Detecting poison gas

mm-waves: high-capacity mobile communications

Gigabit mobile communication: Information anywhere, any time, without limits

Residential/office communication: Cellular/internet convergence: competition, low cost, broader deployment

mm-wave imaging: fog/clouds/smoke/dust

Automatic car, intelligent highway

340 GHz HDTV-resolution radar drive safely in fog at 100 km/hr self-driving: complements LIDAR, works in bad weather

Complements 70 GHz Doppler / ranging radar. object near ? approaching ? Can't tell what.

Intelligent highway: coordinate traffic anticipate & manage interactions, avoid collisions

Sensing/imaging for national security

20/70/ 94 GHz radar: is something there ? Long-range, low-resolution: can't tell what.

140-340GHz imaging radar: what is it ? shorter range, TV-like resolution small, light: jeep, helicopter, UAV.

mm-waves: benefits & challenges

(note high attenuation in foul or humid weather)

100

10

0.1

0.01

0

Rain Attenuation, dB/km

Need phased arrays (overcome high attenuation)

Need mesh networks

Receive Phased Arra

 $N = B^2 / \lambda R + 1$

line-of-sight MIMO

mm-waves: potential applications

High-capacity hubs massive spatial multiplexing

High-resolution imaging drive through fog/rain/snow

Compact imaging: drones image through fog/smoke/rain

mm-wave fundamentals

mm-Wave Wireless Needs Phased Arrays

isotropic antenna → weak signal →short range

highly directional antenna → strong signal, must be aimed

no good for mobile

must be precisely aimed \rightarrow too expensive for telecom operators

Antenna & array basics

Electronic beamsteering, a.k.a. phased array

Phase - shifters bring signals back into phase at physical angle θ .

Path length difference $\Delta l = D_v \sin \theta$

Required electrical phase shift between adjacent elements $\Delta \phi = 2\pi \cdot \Delta l / \lambda$.

Multipath propagation: fading & ISI

(Delay spread<< symbol period): fading

LOS, NLOS arrive with aligned symbol periods. LOS, NLOS possibly out-of-phase: weak signal.

(Delay spread ≥ symbol period): ISI

One bit period interferes with another. Need adaptive equalization or OFDM.

Beamforming can suppress ISI

- <u>**1 Gbaud</u> with 10° array beamwidth :</u> multipath mostly causes fading not much ISI</u>**
- **<u>10 Gbaud</u>** with 10° array beamwidth : significant fading <u>and</u> significant ISI
- <u>Solution 1:</u> adaptive equalization or ODFM cost, complexity @ high rates ?
- Solution 2: larger arrays narrower beamwidth

Atmospheric Attenuation: Implications

Worst-case attenuation: ~constant over 50-250 GHz. 10⁻⁵ outage rate: equal losses over 50-300 GHz 10⁻³ outage rate: equal losses over 50-200 GHz

Hardware favors lower frequencies Propagation environment is similar for 50-250GHz links ...but don't forget λ^2/R^2 term ! Exclusive use of VLSI Si processes would force use of ~ < 180GHz

140-340 GHz: Possible Systems

Spatial Multiplexing: massive capacity RF networks

#beams \leq #array elements angular resolution $\approx \lambda / (array width)$

multiple independent beams

each carrying different data
each independently aimed
beams approaches # array elements
small: 1000 elements @220 GHz=3 square inches

Hardware: multi-beam phased array ICs

mm-Wave LOS MIMO: multi-channel for high capacity

- transmitter - array $\left(\frac{\text{aperture area}}{\text{wavelength} \cdot \text{distance}}\right)$ # channels \propto $\theta_{res} \approx \lambda / ND = D / R$ $\rightarrow N \approx B^2 / \lambda R$

Massive capacity wireless; physically small

Torklinson : 2006 Allerton Conference Sheldon : 2010 IEEE APS-URSI Torklinson : 2011 IEEE Trans Wireless Comm.

mm-wave imaging: TV-like resolution, small array

mm-waves \rightarrow high resolution from small antenna apertures

NxN phased array

angular resolution = λ /D (radians) 340 GHz, 35 cm/14 inch aperture \rightarrow 0.14 degree resolution

HDTV-like resolution, fits on car, plane, UAV

A	В	С	D	E	F	G	н	I	J	К	L	Μ		*
1	Boldface indicates parameted	ters to (enter, o	ther parameters are ca	culate	d by forr	nula an	d should b	<mark>be left al</mark> d	one				
2	This spreadsheet calculates power levels for Q	PSK point-p	oint digital m	icrowave radio links along the surface										
3	To calculate RANGE, vary the range until the tr	ransmit powe	er (cell F4) is	at the appropriate level										
4	B: Bit rate	1.00E+09	1/sec	QPSK required radiated power/beam	17.0	dBm	5.07E-02	W	Don't confuse	radiated pow	er with PA ou	tput power		
5	carrier frequency	1.40E+11	Hz	PA output power per element / beam	-5.0	dBm	3.14E-04	W	They differ by	cell C22, the	transmitter p	ackaging loss,		
6	λ: wavelength	2.14E-03	m	QPSK total required radiated power	38.1	dBm	6.48E+00	W	which include	s transmit (bu	t not receive)	antenna losses.		
7	Required SNR (measured as Eb/No)	9.8	dB	total PA output power per element	16.0	dBm	4.01E-02	W		Total PA out	out power	1.03E+01	W	
8	F: receiver noise figure	3	dB	Transmitter: Base station										
9	R: transmission range	225.0	m	A_effective	1.71E-03	meters^2	372.88	Wavelengths ²						
10	atmospheric loss	1.993E-02	dB/m	Vertical beam angle, peak-null	25.00	deg	0.4363	radians						
11	Dant, trans transmit antenna directivity	4.69E+03	none	Horizontal beam angle, peak-null	0.35	deg	0.0061	radians						
12	Dant, rcvr receive antenna directivity	1.03E+02	none	array rows and columns	1	# rows	256	# columns						
13	α : bandwidth factor (0.5< α <1)	0.80		total # array elements	256									
14	radiated channel bandwidth required	800.0	MHz	vertical angle scanned, total	25.0	deg								
15	# beams	128		horizontal angle scanned, total	89.6	deg								
16	кТ	-173.83	dBm (1Hz)	array height	2.37	wavelengths	5.07E-03	meters						
17	packaging loss (receiver)	2	dB	array width	163.70	wavelengths	3.51E-01	meters						
8	packaging loss (transmitter)	2	dB	element height	2.37	wavelengths	5.07E-03	meters						
19	end-of-life hardware degradation	2	dB	element width	0.64	wavelengths	1.37E-03	meters						
20	hardware design margin	2	dB	Antenna directivity, dB	36.71	dB								
21	beam aiming loss (edge of beam)	2	dB	Receiver-handset										
22	systems operating margin	5	dB	A_effective	3.75E-05	meters^2	8.16	Wavelengths ²						
23	Prec, received power at 1E-3 BER	-60.03	dBm	Vertical beam angle, peak-null	20.0	deg	0.3491	radians						
24	geometric path loss	2.76E-07		Horizontal beam angle, peak-null	20.0	deg	0.3491	radians						
25	geometric path loss, dB	-65.59	dB	array rows and columns	8	# rows	8	# columns						
26	path obstruction loss (shadowing)	5.00	dB	vertical angle scanned, total	160	deg								
27	atmospheric loss, dB	4.48	dB	horizontal angle scanned, total	160	deg								
28	atmospheric loss	19.93	dB/km	array height	2.9E+00	wavelengths	6.27E-03	meters	<calculation< td=""><td>ns are a bit of</td><td>f</td><td></td><td></td><td></td></calculation<>	ns are a bit of	f			
29				array width	2.9E+00	wavelengths	6.27E-03	meters	for the handse	et element spa	acings becau	se		
30				element height	3.65E-01	wavelengths	7.83E-04	meters	with a wide ar	ngular scan ra	ange, the ang	ular resolution		
31				element width	3.65E-01	wavelengths	7.83E-04	meters	varies as a fu	nction of scar	angle			
32				Antenna directivity, dB	20.11	dB								
33														
34	rain attenuation fits from Olesn, Rogers, Hodge	e, IEEE Tran	s Ant and Pro	op, March 1978				н = о	, 4, 9.2 km; v =	= 7.5, 1, 0.08 g	g/m3			
35	Rain rate, mm/hr	50	mm/hr	1.97	inch/hr			100		-ll.				iil T
1	75Hz_downlink 140GHz_down	nlink 140) GHz_uplink	÷ (+)	0.00		: •	ł				4	•	
	/						-				i 🏴 🗕 —		- + 90'	%

If we use ins	stead	a /!	5GHz carriei							utput pow	er
								_		ackaging	loss,
the range in	creas	es t	o 325 meter	rs (vs	. 25	0 m	eters	5)) antenna 1.0	losse: <mark>2E+01</mark>
hut the hand	dset l	herr	mes 16mm	x16r	nm	lvs	9mm	x9m	m)		
sut the hand	JJCLK	JELL	mes romm	~TOI		(23.	3		,		
and the hub	OKKO	, ha		AVEE		$\sim l_{\rm M}$		ma v 2	E O m		
and the hub	did	y be	comes 9mm			11 (V	5. 5 11	III×2	5011		
eams	128		horizontal angle scanned, total	89.6	deg						
	-173.83	dBm (1Hz)	array height	2.37 w	avelengths	9.46E-03	meters		2	beam aiming add	
ckaging loss (receiver)	2	dB	array width	163.70 w	avelengths	6.55E-01	meters		5.00	blockage add	
kaging loss (transmitter)	2	dB	element height	2.37 w	avelengths	9.46E-03	meters		6.69	atmosphere add	
d-of-life hardware degradation	2	dB	element width	0.64 w	avelengths	2.56E-03	meters		26.02	100 vs 5 m add	
dware design margin	2	dB	Antenna directivity, dB	36.71	dB				39.72	power adjustment ra	nge, dl
an aiming loss (adds of beam)			Dessiver handset		I						
					1101	8.16	Wavelengths ²				
$\mathbf{r} \mathbf{use} = \mathbf{A} \mathbf{x} \mathbf{A}$	IXM	mxx					_				
Dr, use a 4×4	• (8m)	m×٤	smm) nands	et ar	Idy,	0.3491	radians				
Dr, use a 4×4	(8m	۲×m	smm) nands	et ar	lay,	0.3491 0.3491	radians radians			-7.41E+01	
Dr, use a 4×4	l (8m e her	3×m mor	ommj nanus os 210 mote	set ar	lay,	0.3491 0.3491 8	radians radians # columns			-7.41E+01	
Dr, use a 4×4 and the rang	e bec	m×ð cmo:	es 210 mete	ers.	iay,	0.3491 0.3491 8	radians radians # columns			-7.41E+01	
Dr, use a 4×4 and the rang	e bec	m×t cm	es 210 mete	ers.	ldy,	0.3491 0.3491 8	radians radians # columns			-7.41E+01	
Dr, use a 4×4 and the rang	e bec		es 210 mete array height		ldy,	0.3491 0.3491 8 1.17E-02	radians radians # columns meters	<calculatior< td=""><td>ns are a bit off</td><td>-7.41E+01</td><td></td></calculatior<>	ns are a bit off	-7.41E+01	
Dr, use a 4×4 and the rang	e bec	COM COM dB/km	es 210 mete array height array width	2.9E+00 w 2.9E+00 w	l d y,	0.3491 0.3491 8 1.17E-02 1.17E-02	radians radians # columns meters meters	<calculation< td=""><td>ns are a bit off et element spa</td><td>-7.41E+01 cings because</td><td></td></calculation<>	ns are a bit off et element spa	-7.41E+01 cings because	
Or, use a 4×4 and the range hospheric loss	e bec	m×t com dB/km	es 210 mete array height element height	2.9E+00 w 2.9E+00 w 3.65E-01 w	aceg ravelengths ravelengths ravelengths	0.3491 0.3491 8 1.17E-02 1.17E-02 1.46E-03	radians radians # columns meters meters meters	<calculation for the handse with a wide ar</calculation 	ns are a bit off et element spa ngular scan rai	-7.41E+01 cings because nge, the angular reso	lution
Dr, use a 4×4 Ind the range Dospheric loss	e bec	m×t cm dB/km	es 210 mete array height array width element height element width	2.9E+00 w 2.9E+00 w 3.65E-01 w 3.65E-01 w	aeg vavelengths vavelengths vavelengths vavelengths	0.3491 0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians radians # columns meters meters meters meters meters	<calculation for the handse with a wide ar varies as a fu</calculation 	ns are a bit off et element spa ngular scan rai nction of scan	-7.41E+01 cings because nge, the angular reso angle	lution
Dr, use a 4×4 and the range hospheric loss	e bec		es 210 mete array height array width element height element width Antenna directivity, dB	2.9E+00 w 2.9E+00 w 3.65E-01 w 3.65E-01 w 2.011	aeg vavelengths vavelengths vavelengths vavelengths dB	0.3491 0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians radians # columns meters meters meters meters	<calculation for the handse with a wide ar varies as a fu</calculation 	ns are a bit off et element spa ngular scan ran nction of scan	-7.41E+01 cings because nge, the angular reso angle	lution
Dr, use a 4×4 and the range hospheric loss, up	e bec		es 210 mete array height array width element height element width Antenna directivity, dB	2.9E+00 w 2.9E+00 w 3.65E-01 w 3.65E-01 w 20.11	aeg vavelengths vavelengths vavelengths vavelengths dB	0.3491 0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians radians # columns meters meters meters meters	<calculation for the handse with a wide ar varies as a fu</calculation 	ns are a bit off et element spa ngular scan ran nction of scan	-7.41E+01 cings because nge, the angular reso angle	lution
Dr, use a 4×4 and the range rospheric loss, up nospheric loss		COM dB/km	es 210 mete array height array width element height element width Antenna directivity, dB	2.9E+00 w 2.9E+00 w 3.65E-01 w 3.65E-01 w 20.11	ravelengths vavelengths vavelengths vavelengths dB	0.3491 0.3491 8 1.17E-02 1.17E-02 1.46E-03 1.46E-03	radians radians # columns meters meters meters meters	<calculation for the handse with a wide ar varies as a fun</calculation 	ns are a bit off et element spa ngular scan ran nction of scan	-7.41E+01 cings because nge, the angular reso angle	lution

75GHz or 140GHz spatially multiplexed femtocells

340 GHz (or even 650 GHz) backhaul

Sub-mm-wave line-of-sight MIMO network backbone

wireless @ optical speed; link network where fiber is too expensive to place. 340 GHz: 640Gb/s @ 500 meters range; 1.6 meter linear array (5Tb/s for 8×8 square array). 650 GHz: 1.28Tb/s @ 500 meter range; 1.6 meter linear array. Capacity doubles again if we use both polarizations.

340 GHz 640 Gb/s MIMO backhaul

n. wavelengui	0.021-04	
Required SNR (measured as Eb/No)	9.8	dB
	1 110.00	SETT (1116
packaging loss (receiver)	2	dB
packaging loss (transmitter)	2	dB
end-of-life hardware degradation	3	dB
hardware design margin	3	dB
beam aiming loss (edge of beam)	0	dB
systems operating margin	10	dB
Prec, received power at 1E-3 BER	-33.00	dBm
geometric path loss	2.07E-06	
geometric path loss, dB	-56.84	dB
path obstruction loss (foliage, glass)	0.00	dB

1.6m MIMO array: 8-elements, each 80 Gb/s QPSK; 640Gb/s total

4 × 4 sub-arrays → 8 degree beamsteering

500 meters range in 50 mm/hr rain; 29 dB/km

Realistic packaging loss, operating & design margins

PAs: 82mW P_{out} (per element)

LNAs: 4 dB noise figure

340 GHz 640 Gb/s MIMO backhaul

	А В	С	D	E	F	G	Н	I.	J	К	L	М	Ν	0	
1	Boldface indicates parame	ters to	enter, c	other parameters are	e calcul	ated by	formula	<mark>a and shoเ</mark>	uld be left alone						
2	This spreadsheet calculates power levels for 40	PSK point-p	oint digital m	icrowave radio links along the surfa	ice										
3	To calculate RANGE, vary the range until the tra	nsmit power	(cell F4) is at	the appropriate level	30					Power levels for	or 64-QAM, a	pprox			1
4	B: Bit rate *per MIMO transmitter*	8.00E+10	1/sec	4QAM required radiated power	29.2	dBm	8.281E-01	W		41.31	dBm	1.35E+01	W		1
5	carrier frequency	3.40E+11	Hz	output power per element	19.1	dBm	8.20E-02	W	output power per element	31.27	dBm	1.34E+00	W		1
6	λ: wavelength	8.82E-04	m	output power per sub-array	31.2	dBm	1.31E+00	W	output power per sub-array	43.31	dBm	2.14E+01	W		1
7	Required SNR (measured as Eb/No)	9.8	dB	output power of whole system	40.2	dBm	1.05E+01	W	output power of whole system	52.34	dBm	1.71E+02	W		1
8				Transmitter						Power levels for	or 16-QAM, a	pprox			1
9				A effective	6.35E-04	meters ²	815.67	Wavelengths ²		35.71	dBm	3.725E+00	W		
10	F: receiver noise figure	4	dB	Vertical beam angle, FWHM	2.0	deg	0.0349	radians	output power per element	25.67	dBm	3.690E-01	W		1
11	R: transmission range	500.0	m	Horizontal beam angle, FWHM	2.0	deg	0.0349	radians	output power per sub-array	37.71	dBm	5.903E+00	W		1
12	atmospheric loss	2.875E-02	dB/m	array rows and columns	4	# rows	4	# columns	output power of whole system	46.74	dBm	4.723E+01	W		1
13	Dant, trans transmit antenna directivity	1.03E+04	none	total # array elements	16										
14	Dant, rcvr receive antenna directivity	1.03E+04	none	vertical angle scanned, total	8.0	deg									1
15	α : bandwidth factor (0.5< α <1)	0.80		horizontal angle scanned, total	8.0	deg					0				1
16	radiated channel bandwidth required QPSK	6.40E+10	Hz	array height	28.6	wavelengths	7.16				8-eien	ient			1
17	radiated channel bandwidth required 64QAM	2.133E+10	Hz	array width	28.6	wavelengths					linear	array			1
18	# MIMO channels	8		array height	2.53E-02	meters	1.00	inches				9			
19	total data rate	6.40E+11	sec	array width	2.53E-02	meters	1.00	inches				20-			1
20	kT	-173.83	dBm (1Hz)	Antenna directivity, dB	40.11	dB					A 🖌		$\langle \rangle$		
21	packaging loss (receiver)	2	dB	Receiver							↑ D 5		$\langle \rangle$		
22	packaging loss (transmitter)	2	dB	A_effective	6.35E-04	meters^2	815.67	Wavelengths ²			h 🐔				1
23	end-of-life hardware degradation	3	dB	Vertical beam angle, FWHM	2.0	deg	0.0349	radians			" 🖌				1
24	hardware design margin	3	dB	Horizontal beam angle, FWHM	2.0	deg	0.0349	radians			<u>ج</u> 🕽 🗧		44		
25	beam aiming loss (edge of beam)	0	dB	array rows and columns	4	# rows	4	# columns						/	
26	systems operating margin	10	dB	vertical angle scanned, total	8	deg					<u>a</u> e		4 × 4	214	
27	Prec, received power at 1E-3 BER	-33.00	dBm	horizontal angle scanned, total	8	deg					e 1		subarra	зy	
28	geometric path loss	2.07E-06		array height	2.9E+01	wavelengths					. <u></u>				
29	geometric path loss, dB	-56.84	dB	array width	2.9E+01	wavelengths					se Se		\mathbf{i}		
30	path obstruction loss (foliage, glass)	0.00	dB	array height	2.53E-02	meters	1.00	inches			pa 🕴 🗧		` MIMO		
31	atmospheric loss, dB	14.374685	dB	array width	2.53E-02	meters	1.00	inches			5	· 1	array		
32	atmospheric loss	28.75	dB/km	Antenna directivity, dB	40.11	dB					* W				
33											25-	 propagatio 	n		
34	rain attenuation fits from Olesn, Rogers, Hodge,	IEEE Trans	Ant and Prop	, March 1978				H = 0.4, 9.3	2 km; v = 7.5, 1, 0.08 g/m	13		range			
35	Rain rate, mm/hr	50	mm/hr	1.97	inch/hr						1				
36	Ga	3.38E+00		Gb	0.616			F	Λ	i Λ	-				
37	Ea	-1.51E-01		Eb	0.0126		Ε	° F A	/Λ		a				_
38	а	1.40E+00		b	6.63E-01		B/k	F A		/	1				
39	alpha=aR^b	1.87E+01	dB/km	zero-rain-rate attenuation	10	dB/km		. L			1				
10	140CHz 340CHz 650C		10 array I	anaths	to the right	•				/	3				1
-	140GHZ 340GHZ 650G							: 1							

340 GHz 5 Tb/s MIMO backhaul

This spreadsheet calculates power levels for 40	PSK point-poi	int digital m	icrowave radio links along the surfa	ce								
To calculate RANGE, vary the range until the tra	insmit power (c	ell F4) is a	the appropriate level	30					Power levels	for 64-QAM, app	rox	
B: Bit rate *per MIMO transmitter*	8.00E+10	1/sec	4QAM required radiated power	20.2	dBm	1.035E-01	W		32.28	dBm	1.69E+00	W
carrier frequency	3.40E+11	Hz	output power per element	10.1	dBm	1.03E-02	W	output power per element	22.24	dBm	1.67E-01	W
λ: wavelength	8.82E-04	m	output power per sub-array	22.2	dBm	1.64E-01	W	output power per sub-array	34.28	dBm	2.68E+00	W
Required SNR (measured as Eb/No)	9.8	dB	output power of whole system	40.2	dBm	1.05E+01	W	output power of whole system	n 52.34	dBm	1.71E+02	W
			Transmitter						Power levels	for 16-QAM, app	rox	
			A effective	6.35E-04	meters^2	815.67	Wavelengths ²		26.68	dBm	4.656E-01	W
F: receiver noise figure	4	dB	Vertical beam angle, FWHM	2.0	dea	0.0349	radians	output power per element	16.64	dBm	4.612E-02	W
R: transmission range	500.0	m	Horizontal beam angle, FWHM	2.0	deg	0.0349	radians	output power per sub-arrav	28.68	dBm	7.379E-01	W
atmospheric loss	2.875E-02	dB/m	array rows and columns	4	# rows	4	# columns	output power of whole system	46.74	dBm	4.723E+01	W
Dant trans transmit antenna directivity	1.03E+04	none	total # array elements	16								
Dant, rcvr receive antenna directivity	1.03E+04	none	vertical angle scanned total	8.0	dea							
α : bandwidth factor (0.5< α <1)	0.80		horizontal angle scanned, total	8.0	dea			53643 93				
radiated channel bandwidth required QPSK	6.40E+10	Hz	array height	28.6	wavelengths	7.16		64-0	ement	squar	e arra	V
radiated channel bandwidth required 64QAM	2.133E+10	Hz	array width	28.6	wavelengths			0+ 0	cilicili	Jquun		7
# MIMO channels	64		array height	2.53E-02	meters	1.00	inches					transmitter
	5 105 10		1	2 525 02		1.00	ta alta a		(1-1	
total data rate	5.12E+12	sec	array width	2.33E-02	meters i	1.00	Inches		ar	berture area		arrav
requires 10	5.12E+12 173.83		Antenna directivity dB	ele	meters	15.67 0349	Wavelengths ²	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a	
requires 10 requires 10 i 10W tota	^{5.12E+12} mW I rac		itput per ed powe	ele r	mer	15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a a a a a a	a anray a
requires 10 requires 10 h b 10W tota	5.12E+12 173.83 mW I rac		Antenna directivity dB Itput per ed powel	ele r	meters	15.67 .0349 .0349 4	Wavelengths^2 radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce)	
total data rate kT p requires 10 h b s 10W tota Prec, received power at 1E-3 BER recention path loce	5.12E+12 173.83 mW I rac -33.00 2075 05	dBm (1Hz) OU liat	Antenna directivity dB Itput per Itput per Idput 	ele 611 ele	deg	15.67 .0349 .0349 4	Wavelengths^2 radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce) a a a a a a a a a a a a a a a a a a a	
total data rate kT P r e h b s Prec, received power at 1E-3 BER geometric path loss recometric path loss	5.12E+12 173.83 mW I rac -33.00 2.07E-06 56.84		Antenna directivity dB Itput per Itput per Identification Itput per Identification Itput per Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identification Identif	8 2.9E+01 2.9E+01	deg wavelengths	15.67 .0349 .0349 4	Wavelengths ² radians radians # columns	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		array a a a a a a a a a a a a a a a a a a a
total data rate kT P requires 10 h b 10W tota s Prec, received power at 1E-3 BER geometric path loss, dB path obstruction loss (foliage, class)	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84	dBm (1Hz) OU liat dBm dB	Antenna directivity dB Itput per Itput per Itput per Itpu	8 2.9E+01 2.9E+01 2.9E+01	deg wavelengths wavelergths	15.67 .0349 .0349 4	Wavelengths^2 radians radians # columns	# channel	s $\propto \left(\frac{ar}{wavel}\right)$	ength · distan		
total data rate kT P P P requires 10 h b 10W tota s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00	dBm (1Hz) OU liat dBm dB dB dB	Antenna directivity dB Itput per Itput per Itput pe	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02	deg wavelengths wavelengths meters	1.00 15.67 .0349 .0349 4	Wavelengths^2 radians radians # columns	# channel	s $\propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P P P requires 10 e h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB	Antenna directivity dB Itput per Itput per Itput per It	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 2.53E-02 2.53E-02	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate k ^T requires 10 h b 10W tota s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput per 	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11	deg wavelengths wavelengths meters meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Inches Wavelengths^2 radians radians # columns inches inches	# channel	s $\propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P P P P P P P P P P P P P	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput pe	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11	deg wavelengths wavelengths meters meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths ² radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		array a
total data rate kT P requires 10 h b 10W tota Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB atmospheric loss	5.12E+12 173.83 mW 173.00 2.07E-06 -56.84 0.00 14.374685 28.75 	dBm (1Hz) OU liat dBm dB dB dB dB/km	Antenna directivity dB Itput per Itput per Itput per Itpu	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11	deg wavelengths wavelengths meters meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{aq}{wavel}\right)$	ength · distan		array a
total data rate kT P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge Rain rate, mm/hr Ga	5.12E+12 173.83 mW I rac 2.07E-06 -56.84 0.00 14.374685 28.75 JEEE Trans A 50 3.38E+00	dBm (1Hz) OU liat dBm dB dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per Itput per Itp	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11 inch/hr	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT p p requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge Rain rate, mm/hr Ga Fa	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 	dBm (1Hz) OU liat dBm dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per Itput per 	8 2.9E+01 2.9E+01 2.53E-02 40.11 2.9E+01 2.53E-02 40.11 inch/hr 0.616 0.0126	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$
total data rate kT P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge Rain rate, mm/hr Ga Ea a	5.12E+12 173.83 mW I rac -33.00 2.07E-06 -56.84 0.00 14.374685 28.75 	dBm (1Hz) OU liat dBm dB dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11 inch/hr 0.616 0.0126 6.63E-01	deg wavelengths wavelengths meters meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan	ce $na a$ $aa a$ $aa a$ $aa a$ $N \cong$	$B^2/\lambda R$
total data rate k ^T P requires 10 h b s Prec, received power at 1E-3 BER geometric path loss geometric path loss, dB path obstruction loss (foliage, glass) atmospheric loss, dB atmospheric loss Train attenuation fits from Olesn, Rogers, Hodge Rain rate, mm/hr Ga Ea a alpha=aR^b	5.12E+12 173.83 mW rac 33.00 2.07E-06 -56.84 0.00 14.374685 28.75	dBm (1Hz) OU liat dBm dB dB dB dB/km nt and Prop mm/hr	Antenna directivity dB Itput per Itput per	8 2.9E+01 2.9E+01 2.53E-02 2.53E-02 40.11 inch/hr 0.616 0.0126 6.63E-01	deg wavelengths wavelengths meters dB	1.00 15.67 .0349 .0349 4 1.00 1.00	Wavelengths^2 radians radians # columns inches inches	# channel	$s \propto \left(\frac{ar}{wavel}\right)$	ength · distan		$B^2/\lambda R$

140 GHz, 640 Gb/s MIMO backhaul

Why not use a lower-frequency carrier, e.g. 140 GHz ?

8-element 640Gb/s linear array: same link assumptions requires 2mW (vs. 80mW) power/element requires 2.6m (vs. 1.6m) linear array

8-element 5Tb/s square array: same link assumptions requires 0.25mW (vs. 10mW) power/element requires 2.6m (vs. 1.6m) square array

64-element square array

340 GHz frequency-scanned imaging car radar

Imaging for cars, aircraft drive safely @ 65MPH in heavy fog fly in heavy dust/fog/smoke

Short wavelengths:

HDTV-resolution imaging, small: helicopter, drone, car

The challenge: complexity

standard array: # pixels = # RF channels HDTV image: ~2×10⁶ pixels. Need 2×10⁶ RF channels !

Hardware-efficient imaging # RF channels << # pixels several techniques

340 GHz frequency-scanned imaging car radar

See a soccer ball at 300 meters in heavy fog

(10 seconds warning @ 100 km/hr.)(5 dB SNR, 35 dB/km, 30cm diameter target, 10% reflectivity)

Image refresh rate: 60 Hz

Resolution 64×512 pixels

Angular resolution: 0.14 degrees

Angular field of view: 9 by 73 degrees

Aperture: 35 cm by 35 cm

Component requirements: 44 mW peak power/element, 3% pulse duty factor 6 dB noise figure,

3 dB package losses (each: trx, rcvr) 5 dB manufacturing/aging margin

340 GHz frequency-scanned imaging car radar

1										
2	Boldface indicates parameters to enter, o	ther paramet	ters are calci	ulated by formula and should be left alone						
3	This spreadsheet calculates the required transmit power for a radar at a specified range for a radar.									
4	We are assuming a frequency scanned a	r <mark>ray, i,e a line</mark>								
5	carrier frequency	3.40E+11	Hz	required transmit power	29.30	dBm	8.51E-01	W		
6	λ: wavelength	8.82E-04	m	resolution at image plane	0.75	meters				
7	antenna array height	3.53E-01	meter	power per element average	11.24	dBm	1.3E-02	W		
8	antenna array width equal to height	3.53E-01	meter	pulse duty cycle	0.03					
9	antenna array area	1.25E-01	meter^2	peak power per element	26.5	dBm	4.4E-01	W		
10	Dant, trans transmit antenna directivity	2.01E+06	none	F: receiver noise figure	6	dB				
11	# image rowsphase array steered	64	none	NF assumes 600 GHz ft, 5 dB stage gain, 1	.5 dB excess	S				
12	# image columnsfrequency steered	512	none	кТ	-173.83	dBm (1Hz)				
13	# image pixels	3.28E+04	none	Required SNR for target detection	15	dB				
14	array pixel width	3.53E-01	meters	Prec, received power	-89.82	dBm				
15	array pixel height	5.51E-03	meters	R: transmission range	300	m	984	feet	0.18641135	8 mile
16	# phased array RF channels	64	none	target diameter	0.344	meter	1.35E+01		50	
17	resolution (pixel) beam angle FHWM	0.14	deg	target area	9.3E-02	m^2	1.00E+00	ft^2	~	
18				target reflectivity	-10.0	dB			E	FC
19	resolution at image plane	0.75	meters	atmospheric loss	0.035	dB/m	3.45E+01	dB/km	ž.	FC
20				manufacturing, aging, system margin	5.0	dB				
21	phase steered vertical beam sweep	9.14	deg	packaging and antenna losses, total	6.0	dB			Z SS	ver
22	frequency steered horiz beam sweep	73.11	deg	geometric path loss	1.82E-08				TAJ 20	
23	Receiver detection bandwidth	2.00E+06	Hz	geometric path loss, dB	-77.40	dB			Z Z	
24	image acquisition time	1.64E-02	seconds	round trip atmospheric loss, dB	20.72	dB			LTA 2	
25	image refresh rate	6.10E+01	Hz	car speed	65	MPH			~ F	l
26				car speed	2.89E+01	m/s				
27				time to target	1.04E+01	seconds			0	
28									Fig. 1. SV	VD mode
20	new radar quasi optical cales po	lystrata array							1.6. 1. 01	
DEAD		iystrata_array_		:						
READY										— + 110%

32

mm-wave imaging with crossed linear arrays

Established approach.

Transmitter illuminates vertical stripe. Receiver detects horizontal stripe.

Requires 1×N arrays to form N×N image.

N²:1 SNR degradation with single-beam receiver Only 1/N of transmitter power is detected Receiver directivity is N:1 smaller than if focused on one image pixel

N¹:1 SNR degradation with multi-beam receiver Receiver detects all transmitter power Receiver directivity is N:1 smaller than if focused on one image pixel

Transistors

mm-Wave Wireless Transceiver Architecture

custom PAs, LNAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

IC Technologies for 100 + GHz systems

Silicon

baseband processing at all frequencies RF sections @ 140, 200GHz PAs, LNAs in short-range 140, 220 GHz links

GaN

high-power amplifiers in long-range 140,220GHz links (possibly 340GHz ?)

InP HEMT

low-noise amplifiers in long-range 140,220GHz links low-noise amplifiers @ 340, 650GHz

> MIMO phased arrays

on 4 faces

InP HBT

spatially multiplexed base station

medium-power amplifiers in long-range 140,220GHz links power amplifiers @340, 650GHz RF sections @ 340, 650GHz

MIMO hub:

propagation

range
mm-wave CMOS (UCSB examples)

150 GHz amplifier:

IBM 65 nm bulk CMOS, 2.7dB gain per stage Seo et al., JSSC, Dec. 2009

145 GHz amplifier

GF 45 nm SOI CMOS, 6.3 dB gain per stage Kim, Simseck, 2017 BCICTS

Frequency (GHz)

140GHz MIMO transceiver front-end ICs

S. Lee, A. Simseck, UCSB, 2018 BCICTS, to be presented

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/ μ m total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi: GaAs PAs, LNAs

mm-wave links need:

high transmit power, low receiver noise

0.47 W @86GHz

H Park, UCSB, IMS 2014

0.18 W @220GHz T Reed, UCSB, CSICS 2013

1.9mW @585GHz M Seo, TSC, IMS 2013

Gallium Nitride Power Technologies

GaN is the leading high-frequency power technology

130nm / 1.1THz InP HBT Technology

Rode (UCSB), IEEE TED, 2015

130nm / 1.1THz InP HBT: IC Examples

220 GHz 0.18W power amplifier

UCSB/Teledyne: T. Reed et al: 2013 CSICS

325 GHz, 16mW power amplifier

UCSB/Teledyne: A. Ahmed, 2018 EuMIC Symp.

Integrated ~600GHz transmitter

Teledyne: M. Urteaga et al: 2017 IEEE Proceedings

~620 GHz

Transistor scaling laws: (V,I,R,C, τ) vs. geometry

contact resistance

Frequency Limits and Scaling Laws of (most) Electron Devices

Keep constant length

Increase current density 4:1

Bipolar Transistor Design

 $\tau_b \approx T_b^2 / 2D_n$

$$\tau_c = T_c / 2v_{sat}$$

$$C_{cb} = \mathcal{E}A_c / T_c$$

$$I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$\begin{split} R_{ex} &= \rho_{\text{contact}} / A_e \\ R_{bb} &= \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}} \end{split}$$

(emitter length L_E)

Bipolar Transistor Design: Scaling

 $\tau_b \approx T_b^2/2D_n$ $\tau_c = T_c/2v_{sat}$ $C_{ch} = \varepsilon A_c / T_c$ $I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$ $\Delta T \propto \frac{P}{L_E} \left| 1 + \ln \left(\frac{L_e}{W_e} \right) \right|$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$

$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

(emitter length L_E)

Why InP Bipolar Transistors ?

InP: better electron transport than Si higher electron velocity: $3.5 \text{ vs } 1.0 \times 10^7 \text{ cm/s}$ plus wider bandgap \rightarrow higher breakdown field

InGaAs base, base-emitter heterojunction: very low base sheet resistance

Implications:

Higher (f_{τ} , f_{max}) at a given scaling node Higher breakdown* at a given (f_{τ} , f_{max})

*Breakdown is too complicated to summarize with BVCEO. BVCBO vs. BVCEO vs. safe operating area ? Bottom line: look at V_{ce} used in published IC data for a given IC technology.

Making faster bipolar transistors

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm²)	increase 4:1
current density (mA/μm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

Refractory Ohmic Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm

Why no ~2THz HBTs today? Problem: reproducing these base contacts in full HBT process flow

THz HBTs: The key challenges

Obtaining good base contacts

in HBT vs. in contact test structure (emitter contacts are fine)

RC parasitics along finger length

metal resistance, excess junction areas

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

130nm /1.1 THz InP HBT ICs to 670 GHz

614 GHz fundamental VCO M. Seo, TSC / UCSB

620 GHz, 20 dB gain amplifier

M Seo, TSC IMS 2013 also: 670GHz amplifier J. Hacker, TSC IMS 2013 (not shown)

340 GHz dynamic frequency divider M. Seo, UCSB/TSC IMS 2010

300 GHz fundamental PLL M. Seo, TSC IMS 2011

	li	
PEE Phase detector		Active Loop filter VCO
Clock	Dynamic Frequency divider	

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC / UCSB CSIC 2010

220 GHz 180 mW power amplifier T. Reed, UCSB CSICS 2013

81 GHz 470 mW power amplifier H-C Park UCSB IMS 2014

Integrated 300/350GHz Receivers: LNA/Mixer/VCO M. Seo TSC

600 GHz Integrated Transmitter PLL + Mixer M. Seo TSC

Towards a 2 THz SiGe Bipolar Transistor

Similar scaling

InP: 3:1 higher collector velocity SiGe: good contacts, buried oxides

Key distinction: Breakdown

InP has:

thicker collector at same $f_{\tau}\text{,}$ wider collector bandgap

Key requirements:

low resistivity Ohmic contacts note the high current densities

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

	InP	SiGe	
emitter			
junction width	64	18	nm
access resistivity	2	0.6	Ω – μ m ²
base			
contact width	64	18	nm
contact resistivity	2.5	0.7	Ω – μ m ²
collector			
thickness	53	15	nm
current density	36	125	mA/μm²
breakdown	2.75	1.3?	V
f _τ	1000	1000	GHz
f _{max}	2000	2000	GHz

Towards the 2 THz / 64nm Node: 1st step = scaling

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in f_τ: improved noise less required transmit power smaller PAs, less DC power

or higher-frequency systems

InP HEMTs: state of the art

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

FET Scaling Laws (these now broken)

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
specific transconductance (mS/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

FET Scaling Laws (these now broken)

- barrier
 vertical S/D spacer
 low-K dielectric spacer
- high-K gate dielectric

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
specific transconductance (mS/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel state density	increase 2:1
contact resistivities	decrease 4:1

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling. Shorter gate lengths degrade electrostatics \rightarrow reduced $g_m/G_{ds} \rightarrow$ reduced f_{max} , f_{τ}

Towards faster HEMTs

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO_2 (ε_r =25): adequately low leakage

Scaling limit: source access resistance HEMT: InAIAs barrier is under N+ source/drain solution: regrowth, place N+ layer <u>on</u> InAs channel

Target ~10nm node

~0.3nm EOT, 3nm thick channel 1.2 to 1.5 THz f_{τ} .

Towards faster HEMTs: 1st results

Towards faster HEMTs: next step

modulationdoped spacer N+ S/D regrowth

Revised process: no N- material between channel and contacts reduced source/drain access resistance

Revised process: sacrificial layer

reduces parasitic gate-channel overlap: less gate-source capacitance

Thinner gate dielectric (2nm ZrO₂), thinner channel (3nm InAs) higher g_m, lower g_{ds}

ICs

mm-Wave IC design: the challenges

Transistor gains are low: f_{signal} is significant fraction of f_{max} . usually must match for optimum gain, noise, or power.

(Transistor, resistor, capacitor) dimensions are a significant fraction of a wavelength Even short lengths of random wiring add serious inductance and/or capacitance

Transmission-line losses are high

low Q in VCO resonators and filters high combining losses in PAs: low power, low efficiency several dB added noise in LNAs.

First consider the IC wiring stack

(the next 5-6 slides are very old, predate modern mm-wave CMOS)

III-V MIMIC Interconnects: Classic Substrate Microstrip

widely spaced

Line spacings must be ~3*(substrate thickness)

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Coplanar Waveguide

note CPW lines, fragmented ground plane

note fragmented ground plane

note fragmented ground plane

If It Has Breaks, It Is Not A Ground Plane !

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.

No clean ground return $? \rightarrow$ interconnects hard to model

35 GHz static divider

interconnects have no clear local ground return interconnect inductance is non-local interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC

thin-film microstrip wiring every interconnect can be modeled as microstrip some interconnects are terminated in their Zo some interconnects are not terminated ...but ALL are precisely modeled

III-V MIMIC Interconnects: Thin-Film Microstrip

III-V MIMIC Interconnects: Inverted Thin-Film Microstrip

... no ground breaks at device placements

still have problem with package grounding

 \rightarrow high line losses

 \rightarrow no high-Z_o lines

 \rightarrow low current capability

thin dielectrics \rightarrow narrow lines

...need to flip-chip bond

InP 150 GHz master-slave latch

InP 8 GHz clock rate delta-sigma ADC

VLSI mm-wave interconnects with ground integrity

negligible ground breaks @ device placements 🕔

still have problem with package grounding

...need to flip-chip bond

Also:

Ground plane at *intermediate level* permits critical signal paths to cross supply lines, or other interconnects without coupling.

(critical signal line is placed above ground, other lines and supplies are placed below ground)

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

Interconnects within these breaks will be more difficult to model.
ICs in Thin-Film Inverted Microstrip

100 GHz differential TASTIS Amp. 512nm InP HBT

ICs in Thin-Film Inverted Microstrip

205 GHz divider, Griffith et al, IEEE CSIC, Oct. 2010

8:1, 205 GHz static divider in 256 nm InP HBT. Image taken before top metal (ground plane) deposition

High Speed ECL Design: transmission-lines

Followers associated with inputs, not outputs Emitters never drive long wires. (instability with capacitive load)

Double termination for least ringing, send or receive termination for moderate-length lines, high-Z loading saves power but kills speed.

Power supply problems

local resonances between bypass cap and supply interconnects global LC standing-wave resonances on supply bus

Detuning of individual stages Coupling, feedback via supply \rightarrow oscillation, loss of path isolation

Power supply problems

The supply impedance will detune individual stages.

 V_{DD}

'supply

Power supply problems

Model the supply in all simulations.

"If it is on the {IC, PCB, probe station}, put it in the simulation."

Here, the supply is terminated by 50 Ohms through a bias T. This avoids resonances.

More generally, we must simulate system for wide range of external supply impedance.

Differential mm-wave stages

Virtual ground \rightarrow avoids ground via inductance \checkmark Avoids power-supply coupling \checkmark Potential problems with common mode **X**

Pseudo-Differential Stages

RF-IC Design: Simple & Well-Known Procedures

- 1: (over)stabilize at the design frequency guided by stability circles
- 2: Tune input for F_{min} (LNAs) or output for P_{sat} (PAs)
- 3: Tune remaining port for maximum gain
- 4: Add out-of-band stabilization.

This seems simple: so where are the challenges ?

mm-Wave IC design: the challenges

Transistor gains are low: f_{signal} is significant fraction of f_{max} . usually must match for optimum gain, noise, or power.

(Transistor, resistor, capacitor) dimensions are a significant fraction of a wavelength Even short lengths of random wiring add serious inductance and/or capacitance

Transmission-line losses are high

low Q in VCO resonators and filters high combining losses in PAs: low power, low efficiency several dB added noise in LNAs.

Multi-finger transistor cell layout

Individual transistor finger

low current

optimum port impedances well above 50Ω . can't be matched

Mult-finger (n-finger) layout transistor fingers wired in parallel. wiring (L, R) are often in series

 $R_{wire}C_{transistor}, \sqrt{L_{wire}C_{transistor}}$ scale as N^1 or as N^2 . limits # of fingers.

If we are fortunate, we can incorporate sufficient fingers to match to 50Ω . Futher levels of combining: corporate transmission-line combiners, etc.

.....

emitter

 \boxtimes

Sub-mm-wave PAs: need more current

3 μ m max emitter length (> 1 THz f_{max}) 2 mA/ μ m max current density: I_{max}= 6 mA

Maximum 3 Volt p-p output

Load: $3V/6mA = 500 \Omega$

Combiner cannot provide 500 arOmega loading

mm-wave PAs: need more current

InP HBTs:

thinner collector → more current hotter → improve heat-sinking or: longer emitters → thicker base metal

GaN HEMTs:

much higher voltage 100+ GHz: large multi-finger FETs not feasible *Need high current to exploit high voltage*.

Example:

2mA/ μ m, 100 μ m max gate width, 50 Volts 200mA maximum current 50 Volts/200mA= 250 Ω load \rightarrow unrealizable.

Need more mA/µm or longer fingers

4:1 series-connected 81GHz power amplifier

17 dB Gain, 470 mW P_{sat}, 23% PAE Teledyne 250 nm InP HBT, 2 stages, 1.0 mm²(incl pads)

90 mW, 220 GHz Power Amplifier

214 GHz, 180mW Power Amplifier (330 mW design)

88

220GHz PA Design; in development

Technology: 250nm InP HBT

- **Combining techniques investigated:**
 - Series, Balun, Wilkinson
 - Branched λ /4 network \checkmark

Unit cells investigated

- CE, Cascode
- CB with grounded base
- CB with optimized base impedance

Technology	250-nm InP HBT
Freq, GHz	205
#cells	8
VCC, V	2.25
J _{bias} ,mA/um	1.33
S21, dB	15.9
P _{out} ,dB _m	17.8*, 20.7**
PAE %	6.8*,12.9**
BW _{3dB} , GHz	35
area, µm×µm	750×717
*at 1dB compression, **at 2dB	

370 GHz dynamic divider

A 305–330+ GHz 2:1 Dynamic Frequency Divider Using InP HBTs

IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 20, NO. 8, AUGUST 2010

Munkyo Seo, Member, IEEE, Miguel Urteaga, Adam Young, and Mark Rodwell, Fellow, IEEE

340

570 GHz oscillator

326 GHz series-connected PA

16mW Psat; 1.3% PAE, 16.6dB gain A. Ahmed, 2018 BCICTS

Systems & Packages

Beamforming for massive spatial multiplexing

Pure digital beamforming:

dynamic range & phase noise requirements: both appear to be manageable $\checkmark \checkmark \checkmark$ Digital back-end processing requirements (die area, DC power): being investigated ???

Pure RF beamforming: (focal plane, Butler matrixes, RF beamforming) Established approach in DOD systems (high dynamic range). Issues of array tiling.

Large arrays formed from small tile models

Point-point MIMO, MIMO hub, imaging

all require relative large arrays

Modular assembly

large array formed from many small tiles

The mm-wave module design problem

How to make the IC electronics fit ?

100+ GHz arrays: $\lambda_0/2$ element spacing is very small. Antennas on or above IC \rightarrow IC channel spacing = antenna spacing \rightarrow *limited IC area to place circuits*

How to avoid catastrophic signal distribution losses ?

long-range, high-gain arrays: array size can be large. ICs beside array \rightarrow very long wires between beam former and antenna \rightarrow *potential for very high signal distribution losses*

How to remove the heat ?

100+ GHz arrays: element spacing is very small. If antenna spacing = IC channel spacing, then power density is very large

mm-wave/sub-mm-wave packaging

Not all systems steer in two planes... ...some steer in only one.

Not all systems steer over 180 degrees... ...some steer a smaller angular range

Arrays can often be linear (1D), instead of rectangular (2D) Element spacing can often be greater than $\lambda/2$.

 \rightarrow Array packaging then greatly simplified.

Background: split-block waveguides

Waveguides are manufactured (milled or die cast) from a set of pieces Precision pins aid alignment

Concept: Tile for mm-wave arrays

Split-block assembly. Modules tile into larger array

IC area can be much larger than antenna area \rightarrow electronics can fit

Low-loss waveguide feeds, efficient waveguide horn antennas

Efficient heat-sinking: permits W-level GaN, InP, SiGe PAs for long range

Concept: Tile for linear arrays

Terrestrial system: horizontal steering only \rightarrow linear array. Space at edges of linear array: room for III-V PAs, LNAs. Alternating-sides feed: 2mm pitch \rightarrow room for large GaN PAs. Mounting directly on metal carrier \rightarrow heatsinking.

Concept: module for small angular scanning

Terrestrial system: horizontal + vertical steering \rightarrow rectangular array. Limited angular steering range (installation) \rightarrow spacing >> $\lambda/2$ Endfire / edge-card geometry: room for III-V PAs, LNAs. Mounting directly on metal carrier \rightarrow heatsinking.

If Vivaldi's are replaced with dipoles, element spacing can be reduced to $\lambda/2$. \rightarrow potential for wider angular scanning

Concept: module for handset

Handset transceiver performance: less challenging. No external III-V PAs, LNAs

Handset transceiver is simpler: single-beam, not spatially multiplexed Smaller die area \rightarrow array pixel fits in $\lambda/2 \times \lambda/2$

Vertical integration of antenna on low- ε_r superstrate. fused Silica (Rebeiz) possibly also: spin-cast BCB or polyimide, post-process.

Wireless above 100GHz

Wireless above 100 GHz

Massive capacities

large available bandwidths <u>massive spatial multiplexing</u> in base stations and point-point links

Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

IC Technology

All-silicon for short ranges below 250 GHz. III-V LNAs and PAs for longer-range links. Just like cell phones today III-V frequency extenders for 340GHz and beyond

The challenges

spatial multiplexing: computational complexity, dynamic range packaging: fitting signal channels in very small areas