

A 140 GHz MIMO Transceiver in 45 nm SOI CMOS

Arda Simsek¹, Seong-Kyun Kim², and Mark J. W. Rodwell¹

¹University of California, Santa Barbara, USA ²Teledyne Scientific and Imaging, USA

Acknowledgements

Contact support: NSF Giganets program. IC Fabrication: Global Foundries. 45nm SOI

Motivation

Large available spectrum at mm-waves Shorter wavelength – small IC, antenna arrays Massive # of parallel channels – multiple independent beams

Applications and Challenges

4-Channel MIMO Receiver

Direct conversion receiver

140 GHz LNA, double balanced passive mixer

LO distribution through two x9 multipliers from common LO port

4-Channel MIMO Transmitter

Direct conversion transmitter

140 GHz PA (same with LNA), I/Q Gilbert Cell Active Mixer

LO distribution thru two x9 multiplier from common LO port

1.67 mm x 1.76 mm

Design Details – Transistor Modeling

45 nm CMOS SOI

Series Gate Feeding Parallel Gate Feeding

Similar performances (MSG, NF)

SGF is hard to extract the gate inductance

PGF - Source can directly connect to ground

Design Details – Transistor and Matching Modeling

BSIM + PEX + EM simulation (BSIM & PEX from the foundry, HFSS for EM)

 C_{qd} cancellation – better isolation & gain

Design Details – Low Noise Amplifier (LNA)

315 x 170 um² without pads ~ 415 x 370 um² with pads

3-stage differential CS amplifier ~ 415 x 370 μ^2 with C_{gd} cancellation Transformers for matching networks and sing.-to-diff.

Design Details – Down-conversion Mixer

Design Details – x9 Multiplier

- Inverter based single-to-differential conversion & 3rd harmonic generation
- 47 GHz and 140 GHz triplers use similar topology with LNA

• 80 mA @ 1V

Design Details – Up-conversion Mixer / DA

18

16

10

8

-5

ain

(dB)

Measurements – Circuit Blocks

Measurements – Receiver Channel

18 dB conversion gain 12 GHz 3-dB BW

Narrow-band notch in RF response - limits the data rate 163 mA + 109 mA + 223 mA = **495 mA @ 1V**

20

15

10

5

0

-5

Gain (dB)

Conversion

Measurements – Transmitter Channel

3-dB modulation bandwidth ~ 6 - 8 GHz Total transmitter output power: -2 dBm with 1 V supply, 3 dBm with 1.2 V supply @ 145 GHz

161 mA + 94 mA + 208 mA = **463 mA @ 1V**

Measurements – Link Experiment

Measurement Setup Local Osc. Power splitter Keysight Sony CMO DSAV134A CMOS Power Tektronix Г digital supplies AWG520 signal 0 0 Tx PCB analyzer **Rx PCB** WR-05 Attn. Flexible waveguide Flexible waveguide section WR-05 section WR-05

Wired link: G-band (140-220 GHz) waveguide probes, ~1 meter waveguide connection and a waveguide attenuator (20 dB) common 16.6 GHz LO subharmonic drive signal mm-wave carrier is at 16.6 x 9 = 149.4 GHz

State of the Art Transceivers

	UC Berkeley (2014)	Tel Aviv Uni. (2016)	UCSD (2014)	Chalmers Uni. (2016)	This Work (UCSB)
Technology	65nm CMOS	28nm CMOS	45nm CMOS	250nm InP DHBT	45nm CMOS
Freq. [GHz]	240	102-128	155	110-170	140
Gain [dB]	25	36-39	23	26	18
NF [dB]	15#	8.4-10.4	20*	9.5	5.5*
Pdc [mW]	260 (1 TRx)	51 (1 Rx)	345 (1 TRx)	357 (1 TRx)	958 (4 TRx)
Area [mm ²]	2 (1 TRx)	0.89 (1 Rx)	3.92 (1 TRx)	3.64 (1 TRx)	5.91 (4 TRx)
Integration	Full	Rx Front End	Tx/Rx	Tx/Rx	Tx/Rx

*: simulated

#: calculated from measurements

4/22/2020

Conclusion and Future Work

A 140 GHz QPSK transceiver front-end with four channels per IC to support MIMO

One channel transceiver measurements

Initial link experiment results up to 800 Mb/s

Work in Progress

Wireless link measurements with higher data rate

Antenna and package designs

4-channel MIMO receiver hub experiment.

4/22/2020

Backup Slides

LNA Measurements

Simulation vs Measurements (trap-rich) Substrate: High (trap-rich) vs Low resistivity

3-dB bandwidth: 11 GHz (138 – 149 GHz)

Power consumption: Trap-rich 42.4 mW @ 1 V Low-res. 41.7 mW @ 1 V

LNA Linearity Simulations

IIP3: -5.84 dBm, Input P1dB: -13.87 dBm

TIA Breakout measurements

In/output feeding lines are not de-embedded in the measurement Simulation results doesn't include the feeding lines Notch due to the bias network (next slide) BCICTS 2018 San Diego, CA

Multiplier chain (x9) measurement setup

Harmonic mixer:

- Harmonic number: 16, IF @ 404.4 MHz

Date: 31.MAR.2017 13:07:09

BCICTS 2018 San Diego, CA

Date: 31.MAR.2017 13:05:54

are: 31 MAR 2017 12:46:0

Receiver Simulations

Receiver measurements

Transmitter Simulations

LO feedthrough: Q-mixer is unbalanced Lower output power ~ 6 dB 0 V quadrature input

Transmitter measurements

BB @ 0.1 GHz, LO @ 160 GHz

BB @ 0.2 GHz, LO @ 160 GHz

DIAC	VDD (V)	Current (mA)		
BIAS		Chip1	Chip2	
Driver amp.	1	160	161	
Mixer	1	89	94	
Multiplier chain	1	204	208	

Measurement setup: BB-I input is open, all channels are in the on state BCICTS 2018 San Diego, CA

Transmitter measurements

