

100-340GHz Systems: Transistors and Applications

M.J.W. Rodwell¹, Y. Fang¹, J. Rode^{1,2}, J. Wu^{1,3}, B. Markman¹, S. T. Suran Brunelli¹, J. Klamkin¹, M Urteaga⁴

¹University of California, Santa Barbara ²Now with Intel ³Now with GlobalFoundries ⁴Teledyne Scientific and Imaging

Why 100-340GHz Wireless ?

Wireless networks: exploding demand.

Immediate industry response: 5G.

28, 38, 57-71(WiGig), 71-86GHz increased spectrum, extensive beamforming

Next generation (6G ??): above 100GHz.

greatly increased spectrum, massive spectral multiplexing

Plus, TV-like imaging/sensing/radar: cars, airplanes, drones

100-340GHz: Benefits & Challenges

100-340GHz: Potential Applications

MIMO hub: 128 beams/face, 1Gb/s/user 140 GHz

220, 340GHz imaging: drive/fly in fog/rain/snow 300m, 512×64 image, 60Hz, 15dB SNR

Point-point MIMO: 340GHz: Tb/s links massive spatial multiplexing

Ultra-compact imaging: drones unlike visible: image through fog/smoke/rain

140 GHz Spatially Multiplexed Base Station

340 GHz 640 Gb/s MIMO Backhaul

1.6m MIMO array: 8-elements, each 80 Gb/s QPSK; 640Gb/s total

 4×4 sub-arrays $\rightarrow 8$ degree beamsteering

500 meters range in 50 mm/hr rain; 29 dB/km

Realistic packaging loss, operating & design margins

PAs: 82mW P_{out} (per element)

LNAs: 4 dB noise figure

....

dB

dB

dB

dB

dB

dB

dB

dBm

dB

dB

9.8

10

-33.00

-56.84

0.00

2.07E-06

Millimeter-Wave Wireless Transceiver Architecture

custom PAs, LNAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

100-1000 GHz Transistors and ICs

	f _{max} GHz	Good ICs to (GHz)	complexity	LNAs	PAS	increased bandwidth ?
CMOS	350	150/200	transceivers	ok	poor: 1-5 mW	not easy
Production SiGe	300	200/250	transceivers	good	OK: 20-100 mW	depends on \$\$
R&D SiGe	700	300/500	transceivers	good	OK: 20-100 mW	2-3THz
R&D InP HBT	1150	400/650	PA, converters	poor	good: 100-200 mW	2-3THz
R&D InP HEMT	1500	500/1000	LNA	great	weak: 20-50 mW	2-3THz
R&D GaN	400	120/140	PAs	good	excellent: 0.1-1W	600GHz

ICs with useful performance, hero experiments

There are THz transistors today; their bandwidth will increase

Challenge: reducing costs, increasing market size

Gallium Nitride Power Technologies

GaN is the leading high-frequency power technology

130nm / 1.1THz InP HBT Technology

1.1THz f_{max} HBT, 3.5 V breakdown

220 GHz, 0.18W power amplifier

UCSB/Teledyne: T. Reed et al: 2013 CSICS

325 GHz, 16mW power amplifier

UCSB/Teledyne: A. Ahmed, 2018 EuMIC Symp.

Integrated ~600GHz transmitter

Teledyne: M. Urteaga et al: 2017 IEEE Proceedings

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

THz Transistor Measurements

Simple pads:

Substrate coupling: need small pads, narrow CPW Ambiguity in pad stripping order. UCSB 130nm HBTs: order not important. Add through & load to remove ambiguity

On-wafer through-reflect-line:

No ambiguity from pad stripping. Calibration to line Zo Still must avoid substrate resonances CPW does not work. needs thin-film microstrip or ~25 μm substrate with TSV's

Bipolar Transistor Scaling Laws

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change	
emitter & collector junction widths	decrease 4:1	
current density (mA/μm²)	increase 4:1	
current density (mA/μm)	constant	
collector depletion thickness	decrease 2:1	
base thickness	decrease 1.4:1	
emitter & base contact resistivities	decrease 4:1	

Challenges at the 64nm/2THz & 32nm/3THz Nodes

Need high base contact doping

>10²⁰/cm³ for good contacts high Auger recombination very low β .

Need moderate contact penetration

Pd or Pt contacts react with 3++ nm of base penetrate surface contaminants too deep for thin base

Solution: base regrowth:

thin, moderately-doped intrinsic base thick, heavily-doped extrinsic base

Regrown-Base InP HBTs: Images

Before regrowth

After 100nm p-GaAs regrowth

Cross-section

Dry-etched TiW emitter contact

100nm emitter after base regrowth

Regrown-Base InP HBTs: DC Data

Good β , low R_{ex}, high-current operation

Regrown-Base InP HBTs: Base Resistance

0.9 Ω - μ m² resistivity for GaAs/metal contact \checkmark • 294 Ω sheet resistivity for regrown base \checkmark

1.0 Ω - μ m² resistivity for InGaAs/GaAs contact 4300 Ω / sheet resistivity for intrinsic base X

Base contact resistivity sufficient for 64nm/2THz node. Improvements: anneal after regrowth, grade interface

Regrowth: base contacts suitable for 64nm/2THz & 32nm/3THz nodes

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in f_τ: improved noise less required transmit power smaller PAs, less DC power

or higher-frequency systems

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Towards faster HEMTs: MOS-HEMTs

1st demonstration: Fraunhofer IAF

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO_2 (ϵ_r =25): adequately low leakage

Scaling limit: source access resistance

HEMT: InAlAs barrier is under N+ source/drain solution: regrowth, place N+ layer <u>on</u> InAs channel

Target ~10nm node

~0.3nm EOT, 3nm thick channel 1.2 to 1.5 THz f_{τ} .

Towards Faster HEMTs: MOS-HEMTs

High-k

Double regrowth

modulation-doped access regions N+ contacts

High-K gate dielectric: 3 nm ZrO2.

Highly scaled

5nm InAs channel, 10-30nm gate lengths

100-340 GHz wireless systems

massive capacities via spatial multiplexing compact, high-resolution imaging systems short range: few 100 meters

Many challenges

spatial multiplexing: computational complexity, dynamic range packaging: fitting signal channels in very small areas

IC Technology

All-silicon for short ranges below 250 GHz. III-V LNAs and PAs for longer-range links. Just like cell phones today III-V frequency extenders for 340GHz and beyond

Device opportunity: better PAs, LNAs for 140, 220, 340GHz.

In case of questions

Towards faster HEMTs: next step

No N- material between channel and contacts reduced source/drain access resistance

Sacrificial layer

reduces parasitic gate-channel overlap less gate-source capacitance

2.5nm ZrO₂ dielectric, 3nm InAs channel higher g_m, lower g_{ds}

FET Scaling Laws (these now broken)

— low-K dielectric spacer

high-K gate dielectric

FET parameter	change	
gate length	decrease 2:1	
current density (mA/mm)	increase 2:1	
specific transconductance (mS/mm)	increase 2:1	
transport mass	constant	
2DEG electron density	increase 2:1	
gate-channel capacitance density	increase 2:1	
dielectric equivalent thickness	decrease 2:1	
channel thickness	decrease 2:1	
channel state density	increase 2:1	
contact resistivities	decrease 4:1	

Gate dielectric can't be much further scaled.

 g_m/W_g hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling. Shorter $L_g \rightarrow poor$ electrostatics \rightarrow reduced g_m/G_{ds}

Towards faster HEMTs: MOS-HEMTs

1st demonstration: Fraunhofer IAF

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO_2 (ϵ_r =25): adequately low leakage

Scaling limit: source access resistance

HEMT: InAlAs barrier is under N+ source/drain solution: regrowth, place N+ layer <u>on</u> InAs channel

Target ~10nm node

~0.3nm EOT, 3nm thick channel 1.2 to 1.5 THz f_{τ} .

