Wireless Above 100GHz

Mark Rodwell, University of California, Santa Barbara

Ali Niknejad University of California, Berkeley

Why 100+ GHz wireless ?

140-340 GHz properties

140-340 GHz: benefits & challenges

Need phased arrays (overcome high attenuation)

Need mesh networks

Spatial Multiplexing: massive capacity RF networks

Hardware: multi-beam phased array ICs

mm-Wave LOS MIMO: multi-channel for high capacity

transmitter E D D $\frac{\text{aperture area}}{\text{wavelength} \cdot \text{distance}}$ array # channels \propto D 0 D D receiver 1 1 , D. array . .0 D D D 0 .0-0-D , D D D 0 .0-0-0-D .0--0--0- $N \cong B^2 / \lambda R$ D 0 D .0-0-0-0-0-0-0-0-0-0-0-B=(N-1)D0

Massive capacity wireless; physically small

Torklinson : 2006 Allerton Conference Sheldon : 2010 IEEE APS-URSI Torklinson : 2011 IEEE Trans Wireless Comm. 2012 IEEE Marconi prize paper award

140-340GHz imaging: TV-like resolution

mm-waves \rightarrow high resolution from small antenna apertures

angular resolution = λ /D (radians) 340 GHz, 35 cm/14 inch aperture \rightarrow 0.14 degree resolution

HDTV-like resolution, yet fits in car, plane, or UAV

140-340 GHz applications

140-340GHz: high-capacity communications

Gigabit mobile communication.

Mobile information Access

Gigabit residential/office communication.

140-340GHz: automotive applications

340 GHz HDTV-resolution sub-mm-wave imaging radar: see through fog and rain. assist driver: drive safely in fog at 100 km/hr self-driving: complements LIDAR, but works in bad weather.

60 GHz Doppler / ranging radar.

object near ? approaching ? Avoid collision.

Intelligent highway: coordinate traffic

anticipate & manage interactions, avoid collisions

140-340 GHz: sensing and imaging radar

Radar: See threats through fog/smoke/dust, when you can't see in the optical.

30/70/ 94 GHz early-warning radar: threat detection = something is there Longer range → lower resolution: something's there, can't tell what.

140-340GHz imaging radar: threat identification= what is it ? Shorter range (500m in fog), TV-like resolution. Small and light.

Imaging for UAVs, drones, small planes.

small, light aperture, high resolution. sub-mm-wave SAR: see through fog, optical-like resolution, kilometers range mm-wave PAR: imaging/ranging/Doppler

140-340 GHz: Possible Systems

140/220 GHz spatially multiplexed base station

1 Tb/s spatially-multiplexed base station

256 users/face, 4 faces1024 total users @ 1 user/beam, 1 Gb/s/beam;200 m range

Link budget is feasible, but... Required component dynamic range ? Required complexity of back-end beamformer ?

140 GHz spatially multiplexed base station

- Each face supports 256 beams @ 1Gb/s/beam.
- 100 meters range in 50 mm/hr rain

Realistic packaging loss, operating & design margins

PAs: 16 dBm P_{out} (per element)

LNAs: 3 dB noise figure

140/220 GHz femtocells

340 GHz or 650 GHz backhaul

Sub-mm-wave line-of-sight MIMO network backbone

wireless @ optical speed; backhaul when you can't run fiber 340 GHz: 640Gb/s @ 240 meters; 1.2 meter, 8-element array 650 GHz: 1.28Tb/s @ 240 meter; 1.2 meter, 16-element array

340 GHz 640 Gb/s MIMO backhaul

1.2m MIMO array: 8-elements, each 80 Gb/s QPSK; 640Gb/s total 4 × 4 sub-arrays → 8 degree beamsteering

250 meters range in 50 mm/hr rain; 29 dB/km

Realistic packaging loss, operating & design margins

PAs: 10 dBm P_{out} (per element)

LNAs: 4 dB noise figure

dB

dB

dB

dB

dB

dB

dB

340 GHz frequency-scanned imaging car radar

Range: see a soccer ball at 300 meters (10 seconds warning) in heavy fog (15 dB SNR, 35 dB/km, 30cm diameter target, 10% reflectivity, 100 km/Hr) Image refresh rate: 60 Hz

Resolution 64×512 pixels

Angular resolution: 0.14 degrees

Angular field of view: 9 by 73 degrees

Aperture: 35 cm by 35 cm

Component requirements: 35 mW peak power/element, 3% pulse duty factor 6 dB noise figure, 5 dB package losses 5 dB manufacturing/aging margin

Transistors & ICs

IC Technologies for 100 + GHz systems

Si VLSI CMOS, SiGe HBT

Baseband signal processing at any carrier frequency high-frequency interfaces to ~220 GHz low power, high noise \rightarrow long range needs large arrays.

GaN

High-power amplifiers for long-range links Several Watts @94 GHz, likely will evolved to Watts at 220 GHz

InP HBT

up/downconvert to 340, 650 GHz from 220 GHz Si VLSI medium-power amplifiers at 140, 220 GHz.

InP MOS-HEMT

Lowest-noise amplifiers at any frequency low receiver noise \rightarrow less transmit power \rightarrow less system power

mm-Wave Wireless Transceiver Architecture

custom PAs, LNAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

mm-wave CMOS (examples)

260 GHz amplifier, Feedback-enhanced-gain: 65nm bulk CMOS, 2.3 dB gain per stage (350GHz f_{max})

Momeni ISSCC, March 2013

145 GHz amplifier, conventional neutralized design: 45 nm SOI CMOS, 6.3 dB gain per stage

Kim et al. (UCSB), unpublished

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/µm total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi: GaAs PAs, LNAs

mm-wave links need high transmit power, low receiver noise

0.47 W @86GHz

H Park, UCSB, IMS 2014

0.18 W @220GHz T Reed, UCSB, CSICS 2013

1.9mW @585GHz M Seo, TSC, IMS 2013

130nm / 1.1THz InP HBT Technology

Teledyne: M. Urteaga et al: 2011 DRC

Rode (UCSB), IEEE TED, 2015

25

130nm / 1.1THz InP HBT: IC Examples

220 GHz 0.18W power amplifier

UCSB/Teledyne: T. Reed et al: 2013 CSICS

325 GHz power amplifier

UCSB/Teledyne: (being tested)

Integrated ~600GHz transmitter

Teledyne: M. Urteaga et al: 2017 IEEE Proceedings

InP HBT: Towards the 2 THz / 64nm Node

Narrow junctions.

- Thin semiconductor layers
- **High current density**
- **Ultra low resistivity contacts**

Yihao Fang, UCSB, unpublished

HEMTs: key for low noise

2:1 to 4:1 increase in $f_{\tau} \rightarrow$ improved noise

→ less required transmit power → easier PAs, less DC power
or enable higher-frequency systems

HEMTs: State of the art

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

Towards faster HEMTs

Gate barrier:

Key scaling limit

Solution

replace InAlAs barrier with high-K dielectric

Target ~10nm node ~0.5nm EOT, ~1.5 THz f_{τ} .

Jun Wu, UCSB, unpublished

Systems & Packages

Beamforming for massive spatial multiplexing

Pure digital beamforming:

massive dynamic range throughout signal chain massive computational complexity

Pure RF beamforming: (focal plane, Butler matrixes, RF beamforming) Physically complex. Component precision. Lack of adaptation.

Likely best approach is tiled

Butler or RF beamforming in the tile. Analog or digital in overall array

Sectoral phased arrays for size, dynamic range

At a given beamwidth and a given angular steering range, as we increase the # of sectors, we increase the element size (and array size), and reduce the # of beams per sector.

mm-wave arrays become easier to construct Dynamic range is vastly improved.

The mm-wave module design problem

How to make the IC electronics fit ?

100+ GHz arrays: $\lambda_0/2$ element spacing is very small. Antennas on or above IC \rightarrow IC channel spacing = antenna spacing \rightarrow *limited IC area to place circuits*

How to avoid catastrophic signal distribution losses ?

long-range, high-gain arrays: array size can be large. ICs beside array \rightarrow very long wires between beam former and antenna \rightarrow *potential for very high signal distribution losses*

How to remove the heat ?

100+ GHz arrays: element spacing is very small. If antenna spacing = IC channel spacing, then power density is very large

background: split-block waveguides

Waveguides are manufactured (milled or die cast) from a set of pieces Precision pins aid alignment

Concept: Tile for mm-wave arrays

Split-block assembly. Modules tile into larger array

- IC area can be much larger than antenna area \rightarrow electronics can fit
- Low-loss waveguide feeds, efficient waveguide horn antennas
- Efficient heat-sinking: permits W-level GaN, InP, SiGe PAs for long range

Wireless Above 100 GHz

Massive capacities

large available bandwidths <u>massive</u> <u>spatial</u> <u>multiplexing</u> in base stations and point-point links

Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

IC Technology

All-silicon for short ranges below 250 GHz. III-V LNAs and PAs for longer-range links. Just like cell phones today III-V frequency extenders for 340GHz and beyond

The challenges

spatial multiplexing: computational complexity, dynamic range packaging: fitting signal channels in very small areas

(backup slides follow)

Talk is 30 min plus 10 min for questions... **25-30 slides**