Materials for nm Transistors: 2D or 3D ?

Mark Rodwell, University of California, Santa Barbara

2D or 3D Semiconductors ?

2D or 3D: which for future electron devices ? VLSI high-frequency wireless power conversion

What are the challenges ? ...and how best to solve them ?

How should materials community best direct its efforts ?

A plea from a transistor & IC design guy: Please focus on atomic-scale techniques in 3D materials

Goals: Transistors for Computers Transistors for Radios

Transistor design: high-frequency wireless

Bipolar transistor cutoff frequencies:

transit times, RC charging times, CV/I delays

High-frequency scaling

narrow junctions, thin epi layers, high electron velocity high current density, ultra low resistivity contacts

Are 2D materials relevant ?

64 nm in development Yihao Fang, UCSB, unpublished

Transistor design: high-frequency wireless

Field-effect transistor cutoff frequencies:

Transconductance. Output conductance Gate-channel capacitance. Gate end capacitances. Source and drain access resistance

Need thin channel and thin gate dielectric

For low output conductance. For high transconductance \rightarrow low C_{end}/g_{m} time constant.

Need low access resistivities

regrown N+ source / drain interfaces to channel
very low resistivity metal-semiconductor contacts

Transistor design goals: VLSI

Transistor design: challenges and solutions

VLSI FETs: Electrostatic scaling limits

Low subthreshold swing:

Need large gate-channel capacitance much larger than drain-channel capacitance.

Scaling = shorter gate: **need thinner dielectric, thinner channel**

Tunneling leakage: minimum dielectric thickness

 \rightarrow finFETs, gate-all-around FETs.

VLSI FETs: S/D access resistivity

7nm node: contacts are substantial fraction of FET footprint Source/drain access resistance = $\rho_{contact}$ /Area Need extremely low contact resistivity, ~3× 10⁻⁹ Ω -cm². or: corrugated or vertical contacts

VLSI FETs: increasing drive current density

more current per IC area \rightarrow smaller IC area \rightarrow shorter wires

\rightarrow 3D integration

Cohen-Elias et al., UCSB 2013 DRC

J.J. Gu et al., 2012 DRC, Purdue (P. Ye group_ 2012 IEDM

stacked nanosheet FET

https://www-03.ibm.com/press/us/en/pressrelease/52531.wss 10

VLSI FETs: S/D tunneling

Source-drain tunneling leakage:

 $I_{off} \propto \exp(-2\alpha L_g)$, where $\alpha \cong \hbar$

imposes minimum gate length

Solution 1: increased transport mass (Lundstrom) anisotropy, strain Reduces mA/μm with 2DEG FETs. Not so in nanowires Favors stacked stacked nanosheet, stacked nanowire

Solution 2: Corrugation. U-shaped device.

VLSI FETs: power density & supply voltage

TFETs (and FerroFETs): steep subthreshold swing

TFET: truncates source thermal distribution.

TFETs are hard to build !

Requires **PN**, heterojunction perpendicular to channel needs ultra thin channel for high junction field

[011]

[011]

PN tunnel

junction

ource

5

10

Position. nm

15

-0.2-

-0.3

UCSB triple-heterojunction TFET designs. simulations: about 30:1 more on-current, **30:1 faster** logic 0.3even harder to build ! Working on these now. 1.1nm 0.2tunnel Energy, eV P+ widegap channel barrier widegap source -0.1 channel

12

20

Template assisted selective epitaxy

Can make **PN and HJ perpendicular to channel** Can **control thicknesses to near-atomic precision**.

We are trying to use this to make 3HJ TFETs.

Do 2D materials help ?

Do 2D materials aid nm transistor scaling ?

The argument often presented:

Thinner channel \rightarrow thinner (channel+dielectric) \rightarrow shorter $L_{g,min}$

The counter-argument:

It is the sum (channel+dielectric) thickness that matters Dielectric: minimum ~0.5nm EOT Little benefit for channels thinner than 2 nm and...we can make 2nm channels with 3D semiconductors

2D materials: other problems

VLSI: large required areas, low defect density. Exfoliation/transfer→ creases:

Can I make finfets ? or stacked nanosheet FETs ? or stacked nanowires ?

Can I introduce corrugation ? increase S/D contact area ?

Can I get contact resistivity below $10^{-8} \Omega$ -cm²?

A plea to the materials community

When it gets crowded, build vertically

Los Angeles: sprawl

2-D integration: wire length α # gates^{1/2}

LA is interconnect-limited

Chip stacking (skip...different community)
 3D transistor integration

Manhattan: dense

3-D integration: wire length \propto #gates^{1/3}

What should we do? **3D/2D/3D** electronics

Vertically integrated **3-Dimensional transistors** using **nearly 2-Dimensional channels** (1nm or thinner) made from **3-Dimensional materials**

Vertically stacked horizontal nm MOSFETs

Laterally packed vertical nm MOSFETs and TFETs

...with near-atomic control of semiconductor layer thicknesses

What integration density must we beat ?

finFETs permit somewhat shorter gate length than planar FETs *But 7nm node uses 15nm gate**; *can't get much shorter.*

*http://ieeexplore.ieee.org/document/7838334/

What should we do? nm stacked horizontal FETs

Vertical nanosheets: 1 nm channel easier than in finFETs thin the channel to 0.7-1nm precision growth: Atomic Layer Epitaxy . precision surface etching: Atomic Layer ETching

But:

only helps electrostatics when body dominates over high-K only helps S/D tunneling given high transport m*.

https://www-03.ibm.com/press/us/en/pressrelease/52531.wss

What should we do? nm-channel vertical integration

Vertical devices:

gates can be long (~10nm),

yet devices can be packed at <10nm spacing

 \rightarrow increased integration density

What integration density can be achieved ?

3D: what density can be reached ?

Gate dielectric:1nm - limited by tunnelingFET-FET spacing:1nm - limited by tunnelingSemiconductor channel:1nmGate metal:0.5 nmdevice pitch (?)5nm

Physics limits: Integration density can be significantly increased **Technology limits:** 1nm-thickness fabrication feasible?

nm-scale fabrication

nm-scale semiconductor growth: template assisted epitaxy*

form ~2-atom-thick Si layer (not 2D semiconductor) technique: selective growth in ALD-defined sacrificial template ALD has single-atom thickness control

nm-scale metallization and contacts

ALD metal processes, sidewall etch processes

TFETs can be also fabricated by this technique