Transistors: mm-Wave and Low-Power VLSI

Mark Rodwell, UCSB

Low-voltage devices

B. Markman, H.-Y. Tseng, S. Brunelli, S. Choi, A. Goswani, C. Palmstrøm, J. Klamkin: **UCSB** P. Long, J. Huang, E. Wilson, S. Mehrotra, C.Y.-Chen, M. Povolotskyi, G. Klimeck: **Purdue**

InP HBT:

Y. Fang, J. Rode*: UCSB

InP MOS-HEMT J. Wu: UCSB

Millimeter-wave systems design, mm-wave ICs. M. Abdelghany, A. Farid, A. Ahmed, U. Madhow : UCSB A. Niknejad: UC Berkeley

Now with *Intel

VLSI Transistors

Why is Moore's law scaling nearly over ?

Power density: becoming excessive

 $C_{wire} V_{DD}^{2}$ switching energy: \rightarrow want low V_{DD}

Static leakage $I_{off} > I_{on}exp(-qV_{DD}/kT)$ \rightarrow want high V_{DD}

Cannot make FET gates much shorter

Oxide tunneling: minimum oxide thickness → minimum gate length given electrostatics

Source-drain tunneling: minimum gate length

Reducing gate length reduces power:

integration density \uparrow , wiring capacitance \downarrow , switching energy \downarrow .

Reduce power by reducing voltage or increasing density

3D: increasing integration density

Planar FETs: 7nm node uses 15nm gate; can't get much shorter > 15nm minimum transistor pitch.

If oriented vertically, minimum transistor pitch is ~6nm physical limit; fabrication might be difficult/impossible

Perhaps it can be done ?

Tunnel FETs: truncating the thermal distribution

Source bandgap truncates thermal distribution ✓

Must cross bandgap: tunneling X

Fix (?): GaSb/InAs broken-gap heterojunction

Tunnel FETs: are prospects good ?

Real TFET nonzero barrier energy: quantization nonzero barrier thickness: electrostatics

Transmission Probability (WKB, square barrier)

 $P \cong \exp(-2\alpha T_{\text{barrier}}), \text{ where } \alpha \cong \frac{\sqrt{2m * E_{\text{barrier}}}}{\hbar}$

Assume:
$$m^* = 0.06 \cdot m_0, E_b = 0.2 \text{ eV}$$

Then:

- $P \cong 33\%$ for a 1nm thick barrier
 - $\cong 10\%$ for a 2nm thick barrier
 - $\cong 1\%$ for a 4nm thick barrier

For high I_{on}, tunnel barrier must be *very* thin.

TFET on-currents are low, TFET logic is slow

NEMO simulation:

__{∽#} (μA/μm՝

[110] gives more on-current than [100]

high confinement mass low transport mass

low confinement mass high transport mass

P. Long et al., EDL 3/2016

Heterojunctions increase the junction field.

Source HJ: S. Brocard, et al., EDL, 2/2014; Channel HJ: P. Long et al., EDL 3/2016

Added heterojunctions \rightarrow greater built-in potential \rightarrow greater field \rightarrow thinner barrier

Key facts: 2nm thick channel, design for V_{DD} =70mV.

Heterojunctions increase the tunneling probability

Source HJ: S. Brocard, et al., EDL, 2/2014; Channel HJ: P. Long et al., EDL 3/2016

Key facts: 2nm thick channel, design for V_{DD} =70mV.

Heterojunctions increase the on-current

Source HJ: S. Brocard, et al., EDL, 2/2014; Channel HJ: P. Long et al., EDL 3/2016

Added heterojunctions \rightarrow greater built-in potential \rightarrow greater field \rightarrow thinner barrier

Key facts: 2nm thick channel, design for V_{DD} =70mV.

Role of the resonant bound states

P. Long et al., 2016 IEDM: Resonances in TFETs: Avci & Young (Intel) 2013 IEDM

On-state: bound states increase transmission Off-sate: evanescent tails of bound states increases leakage → Keep the bound state energies near the well edge energies

Preferred semiconductors under gate dielectric

(S/D

metal

earown S/D

ulse Dopin

3 nm HfO₂

rtical Space

Pulse Dooin

Ti/Pd/Au

Semi-insulating InP substrate

(m^{10⁻¹} (m¹/V) 10⁻³ 10¹ InAs: 61mV/dec. Dot : Reverse Sweep 0.7/3.0 nm Al_O.N./ZrO_ Solid: Forward Sweep Ti/Pd/ 10^⁰ Leakage| (A/cm⁻ Au Lee et al., 2014 VLSI Symposium Ni/Au 10⁻¹ ate meta Current Density 12nm InassGaa4 Vertical Spacer 10⁻² SS_{min}~ 61 mV/dec. InosoAbusAs Back Barrier 10⁻³ (at V_{ps} = 0.1 V) P-type Doped Barrier Gate SS_{min} ~ 63 mV/dec. 10⁻⁴ InP (Substrate) (at V = 0.5 V) -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Gate Bias (V) 10 Current Density (mA/µm) = 0.1 to 0.7 V InGaAs: 64mV/dec. 2) 0.2 V increment Ti/Pd/ Au Lee et al., 2014 DRC Ni/Au 60 nm N+ gate meta Ino sa Gao A SS__= 64 mV/dec. (at V_ps = 0.1 V) Ine.52Ale.48As Back Barrier SS_= = 66 mV/dec. P-type Doped Barr (at V_{ps} = 0.5 V) (5-10" km 10 0.0 0.2 0.4 0.6 0.8 Gate Bias (V) Sample C 120 Subthreshold Swing (mV/dec) InP: 67*mV/dec. V_=0.1 V, Sample A Ti/Pd/Au Ni/A *Note InP/InGaAs band offset 40 nm N-InGa V. Sample C Huang et al., 2014 Lester Eastman Conference 90 V =0.5 V. Sample C

40 nm N-InGa/ 10 nm N-InF m LI LD InP ca ad InAIAs

Gate length (µm)

Gate dielectrics: Chobpattana et al. (Stemmer), APL 5/2014, APL 10/2014, Carter et al. (Rodwell) Applied Physics Express 8/2011

60 0.01

Target 3HJ tunnel transistor design

Design 3: highest current, no semiconductor alloys.

Need design revision: P-InP \rightarrow P-InAlAs in source

Target 3HJ tunnel transistor design: simulations

Design 3: highest current, no semiconductor alloys.

Base III-V MOS Technology at UCSB

How to build the device? No easy approach.

All TFETs:

need junction perpendicular to gate dielectric. *how ?*

Example processes:

gated mesa edge

nanowire

Memišević, et al 2016 IEEE Silicon Nanoelectronics Workshop

vertical etched ridge

Fujimatsu, Saito, Miyamoto, 2012 IEEE IPRM

Target growth & process flow: Template Assisted Selective Epitaxy (TASE)

TFETs by template-assisted epitaxy

grow semiconductor strip dielectric high-K, electrodes

TASE: L. Czornomaz et al. (IBM Zurich), 2015 & 2016 VLSI Symposia

This conference: see paper Fr2B7, Nanostructures session, S. Brunelli et al., Towards Horizontal Heterojunctions ...

MOCVD TASE

Growth in the template cavity appears to be limited by diffusion mechanisms

Template length influences growth rate with inverse proportionality

This conference: see paper Fr2B7, Nanostructures session, S. Brunelli et al., Towards Horizontal Heterojunctions ...

TFETs: horizontal heterojunctions by TASE

Heterojunctions by pseudo-ALE

InP with ~1.25nm strained InAs layers 110 wafer, clean $1\overline{10}$ growth facets

This conference: see paper Fr2B7, Nanostructures session, S. Brunelli et al., Towards Horizontal Heterojunctions ...

Horizontal InAs & GaAs heterojunctions in InP

Working now on better control of the layer thicknesses...

Towards a TASE-fabricated TFET

First step: simple MOSFET with regrowth S/D contacts

ALE-deposited gate dielectric and metals

Remaining steps for 3HJ-TFET

horizontal GaAs/InAs/InP HJ P+ InGaAs doping ...growth & fabrication

Alterative process: vertical ridge

Drain pads

support narrow vertical ridge → target 5-10 nm ridge

Wrap-around gate wraps over drain no need for planarization

THz transistors

Transistors for mm-wave, sub-mm-wave wireless

Massive growth in use of radio communication sub-5GHz spectrum almost used up

Next generation 5G, coming soon.

28, 38, 57-71(WiGig), and 71-86GHz. Some degree of spatial multiplexing (multiple beams)

Research now explores the next generation (6G?).

100+ GHz carriers: 140, 220, 340GHz maybe 650GHz <u>massive</u> spatial multiplexing

This will drive transistor development:

PAs for transmitters, **GaN**, **InP HBT**, SiGe HBT LNAs for receivers: **InP HEMT**, **InP MOS-HEMT**

100-340GHz wireless communications

Gigabit mobile communication.

Information anywhere, any time, without limits

Cellular/internet convergence: competition, low cost, broader deployment

140/220 GHz spatially multiplexed base station

10 Tb/s spatially-multiplexed base station
Each face supports 256 beams @ 10Gb/s/beam.
100 meters range in 50 mm/hr rain
Realistic packaging loss, operating & design margins

Key device specifications: 140 GHz: PAs: P_{sat}=21.5 dBm: LNAs: F=4 dB 220 GHz: PAs: P_{sat}=25 dBm: LNAs: F=4 dB

340 GHz, 650 GHz spatially-multiplexed backhaul

340 GHz: 640Gb/s @ 240 meters; 1.2 meter, 8-element array F= 4dB, $P_{sat} \cong 14dBm$

650 GHz:
1.28Tb/s @ 240 meters;
1.2 meter, 16-element array
F= 4dB, P_{avg}=14.5dBm, P_{sat}≅18.5dBm

mm-Wave Wireless Transceiver Architecture

custom PAs, LNAs \rightarrow power, efficiency, noise Si CMOS beamformer \rightarrow integration scale

...similar to today's cell phones.

mm-wave CMOS (examples)

260 GHz amplifier, Feedback-enhanced-gain: 65nm bulk CMOS, 2.3 dB gain per stage (350GHz f_{max})

Momeni ISSCC, March 2013

145 GHz amplifier, conventional neutralized design:
 45 nm SOI CMOS, 6.3 dB gain per stage, ~1.5mW P_{sat}
 Kim et al. (UCSB), submitted

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/µm total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

Gallium nitride mm-wave power

GaN is the leading high-frequency power technology

N-polar GaN: Mishra

nm AIN/GaN: Xing/Jena

130nm / 1.1THz InP HBT Technology

Teledyne: M. Urteaga et al: 2011 DRC

Rode (UCSB), IEEE TED, 2015

Gains (dB)

THz transistor measurements

Problems with simple pads:

Substrate resonances @ >35 GHz \rightarrow make pads small, grounds close(!) Ambiguity in series-first or shunt-first pad stripping.

Our present HBTs, stripping order makes only a minor difference.

On-wafer LRL is much better

No pad-stripping. Still must avoid substrate resonances thinned substrate with TSV's or thin-film microstrip wiring

130nm / 1.1THz InP HBT: IC Examples

220 GHz 0.18W power amplifier

UCSB/Teledyne: T. Reed et al: 2013 CSICS

325 GHz, 16mW power amplifier

UCSB/Teledyne: (A. Ahmed, submitted)

Integrated ~600GHz transmitter

Teledyne: M. Urteaga et al: 2017 IEEE Proceedings

but, only ~1 mW output power

InP HBT: Towards the 2 THz / 64nm Node

Thin semiconductor layers (transit time) High current density (CV/I) Narrow junctions (heat) Ultra low resistivity contacts (RC) Low base metal resistance (RC)

5nm P+ spike: low- ρ_c **contacts**, **good** β .

90 nm HBT

45 nm emitter

Yihao Fang, UCSB, to be submitted

InP HBT: Towards the 2 THz / 64nm Node

Good β, even at 90nm.

...because of doping pulse, grade

Yihao Fang, UCSB, to be submitted

Challenges at 65nm: base contacts, base metal

Obtaining good base contacts

in HBT vs. in contact test structure (emitter contacts are fine)

RC parasitics along finger length

metal resistance, excess junction areas

Rode et al., IEEE TED, Aug. 2015

Challenges at 65nm: Base contact penetration

TLM test samples:

ultra-clean surfaces non-penetrating contacts refractories: Ru, Mo, Ir, W $\rightarrow ^{6}\times 10^{-9} \Omega$ -cm² resistivity

HBT emitter:

first process step ultra-clean surfaces refractory Mo contacts $^{1}-2 \times 10^{-8} \Omega$ -cm² resistivity

HBT base:

late process step

UV-O₃/HCl cleaning not enough

- controlled-penetration contacts: 1nm Pt \rightarrow 3nm reaction depth
- \rightarrow incompatible with thin & pulse-doped base designs

Next: regrowth instead of scaling

mm-wave PAs: need higher current density

3 μm max emitter length (> 1 THz f_{max}) 2 mA/μm max current density I_{max}= 6 mA

Maximum 3 Volt p-p output

Load: $3V/6mA = 500 \Omega$

1) Transmission-line combiner: cannot provide 500 Ω loading 2) Lumped multi-finger layouts: parasitics, reduced gain, f_{max}

HEMTs: key for low noise

$$F_{\min} \approx 1 + 2\sqrt{g_m (R_s + R_g + R_i)\Gamma} \cdot \left(\frac{f}{f_\tau}\right)$$
$$+ 2g_m (R_s + R_g + R_i)\Gamma \cdot \left(\frac{f}{f_\tau}\right)^2$$

 $\Gamma \approx 1$

Hand-derived modified Fukui Expression, fits CAD simulation extremely well.

2:1 to 4:1 increase in $f_{\tau} \rightarrow$ improved noise

→ less required transmit power → easier PAs, less DC power or enable higher-frequency systems

Towards faster HEMTs

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO₂ (ϵ_r =25): adequately low leakage

Scaling limit: source access resistance HEMT: InAlAs barrier is under N+ source/drain

solution: regrowth, placing N+ layer on InAs channel

Towards faster HEMTs

Towards faster HEMTs: next step

Revised process: no N- material between channel and contacts reduced source/drain access resistance

Revised process: sacrificial layer reduces parasitic gate-channel overlap: less gate-source capacitance

Thinner gate dielectric (2nm ZrO₂), thinner channel (3nm InAs) higher g_m, lower g_{ds}

Transistors: mm-Wave Low-Power VLSI

Low-voltage transistors

low voltage \rightarrow low CV² \rightarrow low switching power. NC FETs. high-current TFETs.

3D integration

more transistors/cm² \rightarrow smaller IC \rightarrow shorter wires \rightarrow less power process-intensive: can universities contribute ?

nm-scale memory

easier than nm logic: don't need good I_{on} , I_{off} at low V_{DD} . just need to change a physical state, then measure it.

The transistor was demonstrated 70 years ago.

most easy things have been done. nm technologies need advanced tools: hard for universities. what should we do next ?

VLSI

low voltage logic: NCFETs, high-current TFETs 3D integration. atomic-scale memory.

High-frequency transistors: 100-340GHz

power transistors: GaN HEMT, InP HBT low-noise transistors: InP HEMT Beyond-220GHz transistors: InP HBT & HEMT

Power conversion and control.

(backup slides follow)

100-340 GHz: benefits & challenges

are easily blocked.

and mesh networks.

...this is easier at high frequencies.

ransmit

100-340GHz: radar and imaging

340 GHz TV-resolution radar: <u>see</u> through fog and rain.

drive safely in fog at 100 km/hr self-driving: complements LIDAR, but works in bad weather

60 GHz Doppler / ranging radar.

long-range but low-resolution: detects objects, but can't recognize them .

Imaging for drones, small aircraft small, light aperture, high resolution.

Effect of order of pad stripping

Effect of order of pad stripping

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

Rode et al., IEEE TED, Aug. 2015