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A unique confined lateral selective epitaxial growth (CLSEG) [1] technique for next generation 

semiconductor devices was demonstrated in [2, 3] and termed template assisted selective epitaxy (TASE). 

This technique is based on the formation of hollow confined structures designed in such a way that subsequent 

epitaxial growth initiates from a small area of the substrate exposed to the growth environment, dubbed a 

seed, and continued growth is forced within the template. The benefit of this is the ability to arbitrarily 

determine the shape and orientation of the grown material to form novel nano-electronic device structures.  

Here, results are reported on the fabrication of channel-like nanometer sized horizontal structures, 

and, the subsequent homoepitaxy of indium phosphide (InP) to demonstrate the potential for TASE to 

create sharp horizontal heterojunctions that could enable next generation of tunnel field-effect transistors 

(TFETs) [4]. 

 
Figure 1. Schematic illustration of process flow. a) blanket PECVD SiO2 deposition, b) EBL-based 

formation of seed holes in SiO2, c) patterning of sacrificial layer, d) patterning of HSQ-based top oxide, e) 

removal of sacrificial layer. Omitted: the alumina etch stop layer. 

 

Templates were fabricated on (100) n-type InP wafers. First an atomic layer deposition (ALD) Al2O3 

etch stop layer (omitted in Fig.1) was deposited followed by a plasma enhanced chemical vapor deposition 

(PECVD) SiO2 bottom oxide layer. Seed holes were patterned by electron beam lithography (EBL) and 

etched with inductively coupled plasma etching based on CHF3/CF4/O2. The sacrificial layer that defines the 

cavity was formed by exposing the cavity outline with positive electron beam resist and the top oxide was 

formed by EBL of hydrogen-silsesquioxane (HSQ). Wafers were then flood exposed with a deep-UV lamp 

and developed in amylacetate to remove the resist. Finally, the Al2O3 etch stop was removed with wet etching. 

Each die consists of a parametric array of structures of varying characteristic sizes. Along with growth 

interrupts, this allows for the analysis of the confined growth behavior. 

 

  
Figure 2. Top view SEM images showing a) an array of rotated templates (the red overlayed lines are 

meant to guide the eye and show faceting of growth front), b) typical result of a filled template in back 

scatter mode showing lighter contrast at the seed. 

a) b) c) d) e) 

“seed” source hole source hole 



As-processed wafers were diced and loaded into a metalorganic vapor phase epitaxy (MOVPE) system 

for subsequent growth experiments. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) precursors 

were used. Effective growth selectivity was obtained with a growth temperature of 640°C, a group III 

precursor molar rate of 4x10-6 mol/min, and V/III ratio of 400. 

Scanning electron microscopy (SEM) characterization of the as-grown samples was employed to 

determine the success of growth in the template; the top oxide, while present, is thin enough to easily allow 

electron penetration for good imaging. Images show mostly sharp vertical faceting at the growth front in the 

[110] directions (Fig. 2(a)) regardless of the overall orientation of the template. The images also suggest 

growth initiation occurs exclusively at the seed, showing higher local contrast in backscatter mode (Fig. 2(b)), 

and good selectivity with a lack of dielectric nucleation inside or outside of the template structure. 

Transmission electron microscopy (TEM) cross section images from earlier TASE experiments, with 

SiO2 based templates but with a slightly different fabrication process flow, confirms seeded growth, good 

selectivity, faceting at the growth front, and shows conformal growth along the entirety of the structure (Fig.3). 

 

 
Figure 3. High resolution cross section TEM images of a) the initial growth interface at the seed, b) 

the final growth front in the template. The inset shows where the lamella used for TEM is taken from 

(dashed red line). c) Bright field TEM cross section of the entire confined structure. d) summary of four 

growth runs showing the influence of template length on growth. 

 

Growth interrupt experiments with identical operative parameters were carried out with runs lasting 

1500 s, 2500 s, 3500 s, and 4500 s, and utilizing identical samples from the same processing batch. The 

length of the grown material was measured from the geometrical center of the structure and results were 

compared for structures of varying length with all other sizes fixed (Fig.4(d)). Initial trials suggest growth 

rate suppression with increased template length (the distance between source holes). Under the present 

growth conditions, MOVPE is understood to be mass transport limited [5], so the growth rate reduction could 

be intuitively explained by the need for precursor material, whose transport is diffusion driven, to cover 

longer distances. 

Future endeavors will build on the sharp faceting to develop heterojunction-based devices while 

simultaneously exploiting the flexibility and short learning cycle of this approach to collect data on the 

behavior of MOVPE in confined structures. 
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