Future Directions in > 100 GHz Devices

Mark Rodwell, Yihao Fang, Brian Markman, Hsin-Ying Tseng University of California, Santa Barbara <u>rodwell@ece.ucsb.edu</u>

This work was supported in part by the Semiconductor Research Corporation (SRC), DARPA, and the NSF

Future Directions in > 100 GHz Devices Materials Requirements for Future Transistors

Mark Rodwell, Yihao Fang, Brian Markman, Hsin-Ying Tseng University of California, Santa Barbara <u>rodwell@ece.ucsb.edu</u>

This work was supported in part by the Semiconductor Research Corporation (SRC), DARPA, and the NSF

Transistor design and materials requirements

Transistors for VLSI

Large *I*_{on}, small *I*_{off}, low *V*_{DD}, small footprint... hard ! MOSFETs, TFETs.

Transistors for wireless

High (f_{τ}, f_{max}) , low noise, high power, high efficiency. InP HBTs, InP MOS-HEMTs, (GaN HEMTs, SiGe HBTs)

Transistors for power switching:

high speed, high voltage, high current, GaN, SiC, Si LDMOS ...not my field.

nm FETs: MOS and TFETs

MOSFETs for VLSI

Goals: large I_{on} , small I_{off} , low V_{DD} , small footprint Minimum L_g set by minimum equivalent oxide thickness. $Zr_xHf_{1-x}O_2$? Minimum contact size set by contact resistivity (<0.3 Ω - μ m²) Ballistic I_{on} set by band structure: EOT, m^{*}, # valleys I_{off} is degraded by low bandgap Ideal: m^{*}=0.1m_e, 2-3 valleys, E_g >1eV, grades to small- E_g contact layers

High-current triple-heterojunction TFETs for VLSI

Materials needs:

Direct bandgap, large band offsets, small tunnel barrier, low m* Low D_{it} for N & P materials. (N-InAs ✓, N-InP ✓, P-GaAsSb ?, P-InGaAs ?) small dielectric EOT, low ρ contacts

High-Frequency Transistors

Beyond-5G Wireless: 100-300GHz

10Gb mobile communications:

Unlimited information, anywhere. Capacity well beyond 5G.

TV-resolution wireless imaging:

See, fly, drive perfectly in any conditions.

Debdeep Jena, Alyosha Molnar, Christoph Studer, Huili Xing: Cornell University

Dina Katabi: MIT

Sundeep Rangan: New York University

Amin Arbabian, Srabanti Chowdhury: Stanford

Elad Alon, Ali Niknejad, Borivoje Nikolic, Vladimir Stojanovic: University of California, Berkeley

Gabriel Rebeiz: University of California, San Diego

Jim Buckwalter, Upamanyu Madhow, Umesh Mishra, Mark Rodwell: University of California, Santa Barbara

Andreas Molisch, Hossein Hashemi: University of Southern California

Harish Krishnaswamy: Columbia University

Kenneth O: University of Texas, Dallas

Target applications

MIMO hub:

140GHz, 128 beams/face, 10Gb/s/user, 100m

Hardware-efficient imaging:

240GHz, 340 GHz, 300m, 512×64 image, 60Hz, 15dB SNR

 $\Delta\theta \propto \lambda/L$

Point-point MIMO:

240GHz, 340GHz: 640Gb/s, 250-500m

A few high-frequency ICs

570 GHz fundamental oscillator; InP HBT M. Seo, TSC / UCSB JSSC, 2011

1.0 THz Amplifier; InP HEMT Mei et al, Northrop-Grumman EDL, 2015

600 GHz Integrated Transmitter; InP HBT PLL + Mixer+Amplifier M. Seo TSC 2012 IMS

204 GHz static frequency divider (ECL master-slave latch); InP HBT Z. Griffith, TSC / UCSB CSIC 2010

220 GHz 180 mW power amplifier; InP HBT

T. Reed, UCSB Z. Griffith, TSC CSICS 2013

Transistor development for 100-300GHz systems

InGaN and GaN HEMTs:

High power from 100-340GHz GaN: superior power density at all frequencies UCSB/Mishra: InGaN for increased mobility Cornell/Xing: AlN/GaN/AlN

N-polar GaN: Mishra, UCSB

11

THz InP HBTs:

Efficient 100-650GHz power more f_{max} : more efficient, higher frequencies base regrowth: better contacts \rightarrow higher f_{max} . status: working DC devices; moving to THz

THz InP HBTs:

Transistor scaling laws: (V,I,R,C, τ) vs. geometry

Degenerate State Density (Ballistic) Limits

Charge =
$$\int_{\text{Band edge}}^{\text{Fermi Energy}} q \cdot n(E) dE$$
 Current = $\int_{\text{Band edge}}^{\text{Fermi Energy}} q \cdot v(E) \cdot n(E) dE$

$$J_{sheet} \propto m^{1/2} (E_f - E_{well})^{3/2}$$

not $(\mu c_{ox} / L_g) (V_{gs} - V_{th})^2$
"ballistic limit"

Contacts

$$\rho_{sheet} = c_{dos} (V_{gs} - V_{th}) \propto m^* (E_f - E_{well})$$

"state density capacitance"

 $-\int J \propto m^* (E_f - E_c)^2 \propto m^* (V_{be} - \varphi)^2$ not ~ exp(qV_{be} / kT)

Frequency Limits and Scaling Laws of (most) Electron Devices

Keep constant length

Increase current density 4:1

THz Bipolar Transistors

Bipolar Transistor Design: Scaling

 $\tau_{h} \approx T_{h}^{2}/2D_{n}$ $\tau_c = T_c / 2v_{sat}$ $C_{cb} = \varepsilon A_c / T_c$ $I_{c,\max} \propto v_{sat} A_e (V_{ce,operating} + V_{ce,punch-through}) / T_c^2$ $\Delta T \propto \frac{P}{L_{E}} \left| 1 + \ln \left(\frac{L_{e}}{W_{e}} \right) \right|$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$

$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Bipolar Transistor Scaling Laws

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

to double the bandwidth:	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

InP HBTs: 1.07 THz @200nm

Rode et al., IEEE TED, Aug. 2015

Challenges at the 64nm/2THz & 32nm/3THz Nodes

Need high base contact doping >10²⁰/cm³ for good contacts high Auger recombination very low β .

Need moderate contact penetration

Pd or Pt contacts react with 3++ nm of base penetrate surface contaminants too deep for thin base

Solution: base regrowth:

thin, moderately-doped intrinsic base InGaAs or GaAsSb @ 10¹⁹-10²⁰/cm³ thick, heavily-doped extrinsic base **P-GaAs, ~10²¹/cm³**

Regrown-Base InP HBTs: Images

Before regrowth

After 100nm p-GaAs regrowth

Cross-sections

Dry-etched TiW emitter contact

Regrown-Base InP HBTs: Status

Excellent base contacts; but hydrogen base passivation 0.4 Ω - μ m² resistivity for GaAs/metal contact 290 Ω sheet resistivity for regrown base 0.60 Ω - μ m² resistivity for InGaAs/GaAs contact 1940 Ω / sheet resistivity for intrinsic base

Current process runs: GaAsSb intrinsic base

resistant to hydrogen passivation of carbon base dopant (current reference sample: GaAsSb base, no regrowth) \rightarrow

Solid: $V_{CB} = 0V$

0.5

 $V_{_{BE}}(V)$

Dashed: V_{CB} = 1V

0.6 0.7 0.8 0.9

 10^{1}

10⁰

_____10^{__}

10⁻⁴

0.3

0.4

(mA)

1.5

I_{B,Step}=120µA

0.5

12-

9.

3-

I_c (mA)

Materials for Improved THz HBTs

Contacts: existing materials are sufficient.

N-InAs for emitter, regrown ~10²¹ cm⁻³ GaAs for base

Base transit time is no problem: regrowth permits very thin base

Desire: improved voltage at a given bandwidth

1.4eV bandgap \rightarrow 30V/µm breakdown But: increased transit time at high V_{ce}: Γ -(L,X) scattering, *E-k* dispersion

Is there a better collector material ?:

Larger bandgap Larger Γ-(L,X) energy separation Low optical phonon scattering rates (GaN suffers here). High thermal conductivity.

collector

subcollector

THz Field-Effect Transistors

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in f_τ: improved noise less required transmit power smaller PAs, less DC power

or higher-frequency systems

High-Frequency FET Scaling

- vertical S/D spacer
- low-K dielectric spacer
- high-K gate dielectric

To double f_{τ} , reduce L_g 2:1, but this is not enough Must also reduce C_{gsx}/g_m , C_{gd}/g_m time constants 2:1 $\Rightarrow g_m/W_g$ must be doubled

Must also thin dielectric and channel by 2:1 ($g_m R_{ds}$)

FET Current and Transconductance

FET Scaling Laws (these now broken)

low-K dielectric spacer

high-K gate dielectric

FET parameter	change
gate length	decrease 2:1
current density (mA/mm)	increase 2:1
specific transconductance (mS/mm)	increase 2:1
transport mass	constant
2DEG electron density	increase 2:1
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
either (channel state density)	increase 2:1
or (V _{gs} -V _{th})	increase 4:1
contact resistivities	decrease 4:1

Gate dielectric can't be much further scaled. Not in CMOS VLSI, not in mm-wave HEMTs

 g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_τ scaling.

Shorter gate lengths degrade electrostatics \rightarrow reduced $g_m/G_{ds} \rightarrow$ reduced f_{max} , $f_{\tau_{27}}$

1st MOS-HEMT demonstration: Fraunhofer IAF

Towards faster HEMTs: InAs MOS-HEMTs

Scaling limit: gate insulator thickness

HEMT: InAlAs barrier: tunneling, thermionic leakage solution: replace InAlAs with high-K dielectric 2nm ZrO_2 (ϵ_r =25): adequately low leakage

Scaling limit: source access resistance

HEMT: InAlAs barrier is under N+ source/drain solution: regrowth, place N+ layer <u>on</u> InAs channel

Target ~10nm node

~0.3nm EOT, 3nm thick channel 1.2 to 1.5 THz f_{τ} .

8/2019: process working: 470GHz f_{τ} . @ ~28nm L_{g} . f_{max} very low, f_{τ} high but not high enough. Now fixing obvious process problems.

Device Images

More Device Images

Increasing FET transconductance

For 1-2 THz f_{τ} , seek $g_{\rm mi}$ = 4-8 mS/ μ m.

thin the oxide, thin the well

- \rightarrow increased eigenstate energy
- \rightarrow loss of confinement at large (V_{gs} - V_{th})
- \rightarrow constrains maximum transconductance: $g_{\rm m} \propto (V_{\rm gs} V_{\rm th})^{1/2}$
- \rightarrow maximum achievable $g_{\rm m}$.

Need high barrier energies

InAs/InAlAs vs InAs/AlAsSb InP/AlAsSb ????

mm-Wave CMOS also won't scale much further

High-frequency Si MOSFET design follows the same principles as high-frequency III-V FET design. Same physics, so same limits. But, the carrier velocities are lower

Difficult to further thin the gate dielectric (increased gate leakage) \rightarrow g_m can't increase

Shorter gates don't significantly reduce the capacitance: dominated by ends; ~1fF/ μ m total

```
Maximum g_m, minimum C \rightarrow upper limit on f_{\tau}.
about 350-400 GHz. At the *bottom* of the wiring stack
```

Usable bandwidth is lower than this

high-frequency circuits need controlled-impedance $Z_0=50\Omega$ interconnects microstrip lines with signal lines at top of wiring stack.

high-frequency transistors must interface to ~50 Ohm external impedances ^{0.01} m*/m ~20-30 FET fingers must be tied in parallel to bring device port impedances close to 50Ω. The necessary wiring further reduces ft, fmax: c.a. 300GHz in leading CMOS technologies.

The best CMOS node for mm-wave is 65nm.

45nm SOI, 22nm SOI are close to this performance Intel's RF-optimized 22nm finFET is also close to this performance

Materials for THz (MOS) HEMTs

Low resistance in source-gate access region:

moderate to high mobility

High transconductance

sufficient mobility to reach ballistic current. $m^* \approx 0.08 \cdot m_o$ to $0.16 \cdot m_o$ high ballistic v_{inj} desirable/hard: multiple band minima (large n_s) large band offsets for large (E_f - E_c) \rightarrow large (V_{gs} - V_{th})

Low S/D access resistances

S/D materials with high doping, low barriers. Grade heterointerfaces

High velocities and high breakdown fields in gate-drain drift region

m* need not be particularly lowlow phonon scattering rateslarge intervalley energy separationwide bandgap

Closing

Materials Requirements for Future Transistors

VLSI (MOSFETs, TFETs):

It's mostly about the interfaces: gate dielectrics, S/D contacts The channel also matters: high ballistic I_{on} , sufficient E_g for low I_{off}

MOS-HEMTs for mm-wave ICs, 50-500GHz low-noise amplifiers Same as VLSI MOSFETs: gate dielectrics, S/D contacts Large ballistic I_{on} . How to increase g_m ? Large $(V_{gs}-V_{th}) \rightarrow \text{large} (E_{barrier}-E_{well})$

HBTs for mm-wave ICs, 50-500 GHz power Contacts are critically important...and achievable Breakdown vs. transit time: ballistic overshoot matters. Large intervalley separation, low scattering rates In case of questions

$$R_{DS} \approx \frac{L_g}{W_g} v \varepsilon_r \varepsilon_0 \qquad R_S = R_D = \frac{\rho_{\text{contact}}}{L_{\text{S/D}} W_g}$$