

A Dual-Conversion Front-End with a W-Band First Intermediate Frequency for 1-30 GHz Reconfigurable Transceivers

Arda Simsek¹, Seong-Kyun Kim², Ahmed S. H. Ahmed¹, Robert Maurer³, Miguel Urteaga², and Mark. J.W. Rodwell¹

¹University of California at Santa Barbara, CA

²Teledyne Scientific and Imaging, CA

³Marki Microwave Inc., CA

Outline

- Motivation
- Technology
- System Implementation
- Summary of the main IC blocks
 - High Dynamic Range Diode Mixer
 - Frequency Doublers (30-50 GHz, and 60-100 GHz)
 - x4 LO Multiplier Chain
- System Experiments

Dual-Conversion Receiver

Classical RF architecture: extend to micro/mm-wave frequencies

- Up-convert to 1st IF (100 GHz), down-convert to 2nd IF (or baseband)
- Image response moved out-of-band
- Very wide tuning range, no image response.

Applications:

- Instrumentation
- Wideband surveillance: 1-25 GHz (possibly 1-50 GHz)
- Single IC serving many applications: application-specific LNA + common module

THz HBTs

Dual conversion at microwave:

100 GHz 1st IF would enable over 1-50 GHz spur-free tuning High speed IC technologies: 100 GHz IF feasible

THz transistors enable microwave dual-conversion receivers

System Block Diagram – Dual Conversion

Need high dynamic range & wide tuning range Spurious free multiplier chain & high dynamic range mixer

System Implementation – Dual Conversion

Up/down conversion ICs are same Used back to back to realize the proposed dual conversion receiver 1st IF at W-band 94 GHz or 100 GHz (+/-)

High Dynamic Range Mixer

Transistor mixer: Diode mixer: High IP3 I ow IP3 **E** 10 High noise figure Lower noise figure Poor dynamic range Higher dynamic range RF **Design challenges:** High speed diode 7 MET3 1 7 MET2 Wide bandwidth balun Wide tuning range + high power LO ~ λ/4 < λ/4 InP HBT offers high speed DHBT BC diode B2 **B**3 (Schottky-like high-frequency characteristics)

S.K.Kim et al, CSICS 2016

Four series-connected BC diode pairs RF and LO baluns Balun loss < 4 dB over W-band

1st Frequency Doubler (30-50 GHz)

<u>Uses digital logic</u>

<u>DC offset feedback</u> Minimize dc offset of the ECL limiter output

<u>Delay feedback</u> The phase shifter (delay circuit) to 90 degree delay

 \rightarrow Suppress spurious harmonics

S.K.Kim et al, EuMW 2018

1st & 3rd harmonics rejection > 30 dBc. 4th harmonic rejection > 18 dBc within the delay tuning range

2nd Frequency Doubler (60-100 GHz)

<u>Uses digital logic</u>

<u>DC offset feedback</u> Minimize dc offset of the ECL limiter output

<u>Delay feedback</u> The phase shifter (delay circuit) to 90 degree delay

 \rightarrow Suppress spurious harmonics

S.K.Kim et al, EuMW 2018

1st **& 3**rd harmonics rejection > 25 dBc. 4th harmonic rejection: similar behaviour, equipment limitation

x4 LO Multiplier Chain

x4 multiplier chain from two consecutive doublers

Problem: missing DC blocking cap between doublers DC offset feedback affected

Travelling wave amplifier as driver with ~ 7-9 dBm Pout

3rd, and 5th harmonic rejection > 20 dBc

system performance degradation due to the multiplier harmonic rejection

Frequency Conversion IC

Integrated frequency conversion IC: Diode mixer, High power LO driver, x4 multiplier chain
Total power consumption: ~ 2.8 W - Multiplier chain and LO driver
Size: 3.3 mm x 1.18mm

Up/Down-Conversion Measurements

Down-conversion:

>20 dBm IIP3 and >-6 dB conversion loss

Up-conversion:

>20 dBm IIP3 and >-7 dB conversion loss

System Measurements - Experiment

2 freq. conversion ICs are connected thru

- waveguide components
- W-band band-pass filter
- W-band amplifier

2 probe stations, 8 probe arms

System Measurements - Procedure

Off-wafer IF section uses

- 94 GHz Band-pass filter and
- commercial W-band amplifier

Available W-band amplifier had relatively high noise figure and low IIP3, total system NF and IIP3 limited by the off wafer IF amplifier and not reported here

Tuning range experiment:

- 1. Receiver tuned at a particular desired RF frequency and LO held fixed
- 2. RF is swept over a targeted freq. range DC-40 GHz, while LO is fixed
- 3. Measurements performed at 2, 5, 10, 20 and 30 GHz RF freq.

4. Relative strength of the receiver spurious response measured as a function of input frequency.

5. Largest spurs come from LO 3rd and 5th harmonics.

System Measurements - Results

System Measurements - Results

RF tuned at 20 GHz > 20 dB

RF tuned at 30 GHz > 17 dB

1-30 GHz Reconfigurable Transceivers

Dual conversion: classic widely-tunable RF receiver design Extend to microwave (1-30 GHz) \rightarrow Need ~100 GHz IF

Dual conversion: feasible with wideband (THz) transistors

100 GHz signal frequency is only 10% of transistor $f_{\rm max}$ Enable high-dynamic-range mixers & amps. 4:1, 60-100 GHz LO multiplier using digital techniques

Summary of results:

High dynamic range (6-8 dB loss \approx noise figure, >20 dBm IIP3) Very wide tuning LO (15-25 GHz \leftrightarrow 60-100 GHz)

Spurious free tuning range of 1-30 GHz using dual conversion with IF at 94 GHz

We thank Teledyne Scientific & Imaging for IC fabrication

Thank you

2019 IEEE Radio and Wireless Symposium Orlando, FL, USA

Back-up Slides

2019 IEEE Radio and Wireless Symposium Orlando, FL, USA

Problems of Conventional Design

<u>Limiter DC offsets</u> Spurious outputs at DC, $2f_{in}$, $4f_{in}$, ... \rightarrow spurious XOR outputs at f_{in} , $3f_{in}$, $5f_{in}$, ...

<u>Delay ≠ 90 degree</u> Spurious XOR outputs at DC, 4fin, ... <u>High-Q filters are required</u> large die area poor out-of-band rejection

<u>CMOS digital logic</u> Cannot operate > 100 GHz

In/Output-stage: ECL-gate

<u>Input</u>

Converts a sinusoidal input into a square-wave Input can be driven single-endedly Low input signal (-3 dbm) can drive

ECL-gate can operate at > 100 GHz

Output Driver 50 Ω output load

DC-offset Cancellation

Simulation results: Input 25 GHz

Each ECL-gate has 100 mV offset voltage

Delay Control

Optimum operating range is limited by the tunable delay range XOR has same topology as the delay interpolator

Delay Feedback & Operation

Layout & Chip Photo

Chip size: 750 \times 990 um² (area encloses active devices: 540 x 280 um²) Power consumption: 284 mA (32 – 53 GHz), 324 mA (60-100 GHz) @ 3.3 V

Simulation: Time-domain

Waveforms have 50 % output duty-cycle

The amplitude correspond to digital logic level in the design

Simulation: Frequency-domain

2nd harmonic output power: -8 – -5 dBm 1st & 3nd harmonic rejection > 40 dBc 4th harmonic rejection > 30 dBc

Phase Noise Measurements

Input: 17.5 GHz, Output 35 GHz Added phase noise: 6 – 7 dB (*ideal multiplier: 20*log(N)*)

Travelling Wave Amplifier (TWA)

Bias	Probe				
VCC_3P3V_DA: 41.2 mA @ 3.3 V	RF	GSG (W-band, 2)			
VB_DA: 13.6 mA @ 3.3 V	DC	PGP (1)			

Travelling Wave Amplifier (TWA)

High Speed DHBT BC Diode

Double-heterojunction base-collector diode

- Hole minority carrier storage is eliminated by large energy barrier to holes
- Electron minority carrier storage time is small

 \rightarrow Schottky-like high-frequency characteristics

Balun For Diode Mixer

<u>Common-mode impedance</u> Z_{cm,RF} <u>must be zero</u> <u>IF port is required</u>

Simple center-tapped transformer has wrong Z_{cm}

- Two transformers in series.

Ferrite loading gives correct Z_{cm}; can't use on IC Options: two *parallel* transformers, or balun.

Proposed balun

- Sub-quarter wavelength balun (B1)^[3]
- Section B2 provides the IF port and Z_{cm,RF}=0

[3] H. Park, et al., IEEE J. Solid-State Circuits (UCSB)

MET2

MET1

MET3

Proposed balun

Diode Mixer

Four series-connected BC diode pairs

RF and LO baluns

Balun loss < 4 dB over W-band

Size: 700 um x 300 um (excl. pads)

High-Power LO Driver

Wide bandwidth > 60-100 GHz, > 19 dBm output power

R. Maurer, et al., "Ultra-wideband mm-Wave InP Power Amplifiers in 130nm InP HBT Technology," in 2016 IEEE CSICS

RF Balun Design

Insertion loss < 3.5 dB, phase error < 4°over W-band

LO Balun Design

2-4 dB insertion loss over W-band

System Performance Assuming some LNAs

LNA with 18 dB and 12 dB gain

With 18dB gain LNA											
Receiver	units	overall	RFA1	M1	F2	IFA1	IFA2	IFA3	M2	F3	IFA4
Gain	dB	35	18	-8	-1	6.5	0	0	0.5	-1	20
Gain	linear	3162.28	63.1	0.16	0.79	4.47	1.00	1.00	1.12	0.79	100.00
Noise figure, component	dB		2	8	1	6.2	0.01	0	10	1	2
Noise factor, component	linear	2.37	1.58	6.31	1.26	4.17	1.00	1.00	10.00	1.26	1.58
IIP3, component	dBm	0	25	23	100	24.4	100	100	23	100	30
DC Power, component	mW										
antenna-referred IP3 of component	dBm		25	5	90	15.4	84.5	84.5	7.5	84	15
antenna-referred IP3 of system (in-band)	dBm	5									
antenna-referred IP3 of system (out-of-band)	dBm	5									
antenna-referred noise factor contribution	linear	2.37	1.58	0.08	0.03	0.4	0.00	0.00	0.25	0.01	0.02
system noise figure	dB	3.8									
With 12dB gain LNA											
Receiver	units	overall	RFA1	M1	F2	IFA1	IFA2	IFA3	M2	F3	IFA4
Gain	dB	29	12	-8	-1	6.5	0	0	0.5	-1	20
Gain	linear	794.33	15.85	0.16	0.79	4.47	1.00	1.00	1.12	0.79	100.00
Noise figure, component	dB		2	8	1	6.2	0.01	0	10	1	2
Noise factor, component	linear	4.72	1.58	6.31	1.26	4.17	1.00	1.00	10.00	1.26	1.58
IIP3, component	dBm	0	25	23	100	24.4	100	100	23	100	30
DC Power, component	mW										
antenna-referred IP3 of component	dBm	· · · · ·	25	11	96	21.4	90.5	90.5	13.5	90	21
antenna-referred IP3 of system (in-band)	dBm	11									
antenna-referred IP3 of system (out-of-band)	dBm	11									
antenna-referred noise factor contribution	linear	4.72	1.58	0.34	0.10	1.59	0.00	0.00	1.01	0.03	0.07
system noise figure	dB	6.7									

Figure 1: Receiver Dynamic Range Analysis with High-Gain and Moderate-Gain LNAs

IIP3 Measurement Setup

Up-conversion

Measurement Setup

