A Dual-Conversion Front-End with a WBand First Intermediate Frequency for 1-30 GHz Reconfigurable Transceivers

Arda Simsek ${ }^{1}$, Seong-Kyun Kim², Ahmed S. H. Ahmed ${ }^{1}$, Robert Maurer ${ }^{3}$, Miguel Urteaga ${ }^{2}$, and Mark. J.W. Rodwell ${ }^{1}$
${ }^{1}$ University of California at Santa Barbara, CA
${ }^{2}$ Teledyne Scientific and Imaging, CA
${ }^{3}$ Marki Microwave Inc., CA

- IEEE

Outline

- Motivation
- Technology
- System Implementation
- Summary of the main IC blocks
- High Dynamic Range Diode Mixer
- Frequency Doublers (30-50 GHz, and 60-100 GHz)
- x4 LO Multiplier Chain
- System Experiments

Dual-Conversion Receiver

1-25 GHz RF tuning range

Classical RF architecture: extend to micro/mm-wave frequencies

- Up-convert to $1^{\text {st }}$ IF (100 GHz), down-convert to $2^{\text {nd }}$ IF (or baseband)
- Image response moved out-of-band
- Very wide tuning range, no image response.

Applications:

- Instrumentation
- Wideband surveillance: $1-25 \mathrm{GHz}$ (possibly 1-50 GHz)
- Single IC serving many applications: application-specific LNA + common module

THz HBTs

Dual conversion at microwave:
$100 \mathrm{GHz} 1^{\text {st }}$ IF would enable over 1-50 GHz spur-free tuning
High speed IC technologies: 100 GHz IF feasible
THz transistors enable microwave dual-conversion receivers

System Block Diagram - Dual Conversion

Common module (dual-conversion)
Need high dynamic range \& wide tuning range Spurious free multiplier chain \& high dynamic range mixer

System Implementation - Dual Conversion

Downconversion

Up/down conversion ICs are same Used back to back to realize the proposed dual conversion receiver $1^{\text {st }}$ IF at \mathbf{W}-band 94 GHz or 100 GHz (+/-)

High Dynamic Range Mixer

Transistor mixer:

Low IP3
High noise figure Poor dynamic range

Design challenges:

High speed diode
Wide bandwidth balun
Wide tuning range + high power LO
InP HBT offers high speed DHBT BC diode (Schottky-like high-frequency characteristics)

Diode mixer:

High IP3
Lower noise figure Higher dynamic range

S.K.Kim et al, CSICS 2016

Four series-connected BC diode pairs
RF and LO baluns
Balun loss < 4 dB over W-band

$1^{\text {st }}$ Frequency Doubler (30-50 GHz)

$1^{\text {st }} \& 3^{\text {rd }}$ harmonics rejection $>30 \mathrm{dBc}$. $4^{\text {th }}$ harmonic rejection $>18 \mathrm{dBc}$ within the delay tuning range

$2^{\text {nd }}$ Frequency Doubler (60-100 GHz)

$1^{\text {st }} \& \mathbf{3}^{\text {rd }}$ harmonics rejection $>\mathbf{2 5 d B c}$.
4th harmonic rejection: similar behaviour, equipment limitation

x4 LO Multiplier Chain

x4 multiplier chain from two
consecutive doublers

Problem: missing DC blocking cap between doublers
DC offset feedback affected

Travelling wave amplifier as driver with ~ 7-9 dBm Pout
$3^{\text {rd }}$, and $5^{\text {th }}$ harmonic rejection $>20 \mathrm{dBc}$
system performance degradation due to the multiplier harmonic rejection

Frequency Conversion IC

Integrated frequency conversion IC: Diode mixer, High power LO driver, x4 multiplier chain
Total power consumption: $\sim 2.8 \mathrm{~W}$ - Multiplier chain and LO driver Size: $3.3 \mathrm{~mm} \times 1.18 \mathrm{~mm}$

Up/Down-Conversion Measurements

Down-conversion

Up-conversion

Down-conversion:

$>20 \mathrm{dBm}$ IIP3 and >-6 dB conversion loss

Up-conversion:
$>20 \mathrm{dBm}$ IIP3 and $>-7 \mathrm{~dB}$ conversion loss

System Measurements - Experiment

2 freq. conversion ICs are connected thru

- waveguide components
- W-band band-pass filter
- W-band amplifier

2 probe stations, 8 probe arms

System Measurements - Procedure

Off-wafer IF section uses

- 94 GHz Band-pass filter and
- commercial W-band amplifier

Available W-band amplifier had relatively high noise figure and low IIP3, total system NF and IIP3 limited by the off wafer IF amplifier and not reported here

Tuning range experiment:

1. Receiver tuned at a particular desired RF frequency and LO held fixed
2. RF is swept over a targeted freq. range DC-40 GHz, while LO is fixed
3. Measurements performed at 2, 5, 10, 20 and 30 GHz RF freq.
4. Relative strength of the receiver spurious response measured as a function of input frequency.
5. Largest spurs come from LO $3^{\text {rd }}$ and $5^{\text {th }}$ harmonics.

System Measurements - Results

RF tuned at $2 \mathbf{G H z} \mathbf{>} \mathbf{3 2 d B}$

RF tuned at $5 \mathrm{GHz}>\mathbf{3 0} \mathbf{d B}$

RF tuned at $10 \mathrm{GHz} \boldsymbol{>} \mathbf{2 5 d B}$

System Measurements - Results

RF tuned at $\mathbf{2 0 ~ G H z ~ > ~} \mathbf{2 0} \mathbf{~ d B}$

RF tuned at $\mathbf{3 0} \mathbf{~ G H z} \boldsymbol{>} \mathbf{1 7} \mathbf{~ d B}$

1-30 GHz Reconfigurable Transceivers

Dual conversion: classic widely-tunable RF receiver design Extend to microwave ($1-30 \mathrm{GHz}$) \rightarrow Need $\sim 100 \mathrm{GHz}$ IF

Dual conversion: feasible with wideband ($\mathrm{THz} \mathrm{)} \mathrm{transistors}$

100 GHz signal frequency is only 10% of transistor $f_{\max }$ Enable high-dynamic-range mixers \& amps.
$4: 1,60-100 \mathrm{GHz}$ LO multiplier using digital techniques

Summary of results:

High dynamic range ($6-8 \mathrm{~dB}$ loss \approx noise figure, $\mathbf{> 2 0} \mathbf{~ d B m ~ I I P 3}$)
Very wide tuning LO ($15-25 \mathrm{GHz} \leftrightarrow 60-100 \mathrm{GHz}$) Spurious free tuning range of $\mathbf{1 - 3 0} \mathbf{~ G H z}$ using dual conversion with IF at 94 GHz

We thank Teledyne Scientific \& Imaging for IC fabrication

Thank you

(IEEE

Back-up Slides

Problems of Conventional Design

Limiter DC offsets
Spurious outputs at DC, $2 f_{i n}, 4 f_{i n}, \ldots$
\rightarrow spurious XOR outputs at $f_{\text {in }}, 3 f_{i n}, 5 f_{i n}, \ldots \quad$,
Delay $\neq 90$ degree
Spurious XOR outputs at DC, 4fin, ...

High-Q filters are required large die area poor out-of-band rejection

CMOS digital logic
Cannot operate > 100 GHz

In/Output-stage: ECL-gate

Input
Converts a sinusoidal input into a square-wave

Output
Driver 50Ω output load Input can be driven single-endedly
Low input signal (-3 dbm) can drive

ECL-gate can operate at > 100 GHz

DC-offset Cancellation

Simulation results: Input 25 GHz

The second ECL-gate has 100 mV offset voltage

Each ECL-gate has 100 mV offset voltage

Delay Control

Optimum operating range is limited by the tunable delay range XOR has same topology as the delay interpolator

Delay Feedback \& Operation

Input is connected to XOR outputs
Outputs are connected to Ctrl of the delay interpolator

Layout \& Chip Photo

Chip size: 750×990 um2 (area encloses active devices: 540×280 um2) Power consumption: $284 \mathrm{~mA}(32-53 \mathrm{GHz}), 324 \mathrm{~mA}(60-100 \mathrm{GHz}) @ 3.3 \mathrm{~V}$

Simulation: Time-domain

Input $15 \mathrm{GHz} \rightarrow$ Output 30 GHz

Input $25 \mathrm{GHz} \rightarrow$ Output 50 GHz

* single-ended simulation results

Waveforms have 50 \% output duty-cycle
The amplitude correspond to digital logic level in the design

Simulation: Frequency-domain

$2^{\text {nd }}$ harmonic output power: $-8--5 \mathrm{dBm}$ $1^{\text {st }} \& 3^{\text {nd }}$ harmonic rejection $>40 \mathrm{dBc}$ $4^{\text {th }}$ harmonic rejection $>30 \mathrm{dBc}$

Phase Noise Measurements

Input: 17.5 GHz, Output 35 GHz
Added phase noise: 6-7dB (*ideal multiplier: 20log(N))

Travelling Wave Amplifier (TWA)

Size: 580×740 um 2

Bias	Probe	
VCC_3P3V_DA: 41.2 mA @ 3.3 V	RF	GSG (W-band, 2)
	DC	PGP (1)

Travelling Wave Amplifier (TWA)

Gain \& In/Output Return Loss

High Speed DHBT BC Diode

DHBT

Band diagram

SHBT band diagram

Double-heterojunction base-collector diode

- Hole minority carrier storage is eliminated by large energy barrier to holes
- Electron minority carrier storage time is small
\rightarrow Schottky-like high-frequency characteristics

Balun For Diode Mixer

Common-mode impedance $Z_{c m, R F}$ must be zero IF port is required
Simple center-tapped transformer has wrong Z_{cm}

- Two transformers in series.

Ferrite loading gives correct Z_{cm}; can't use on IC Options: two parallel transformers, or balun.

Proposed balun

- Sub-quarter wavelength balun (B1) ${ }^{[3]}$

Proposed balun

- Section B2 provides the IF port and $Z_{c m, R F}=0$
[3] H. Park, et al., IEEE J. Solid-State Circuits (UCSB)

Diode Mixer

Four series-connected BC diode pairs

RF and LO baluns

Balun loss < 4 dB over W-band

Size: 700 um x 300 um (excl. pads)

High-Power LO Driver

Wide bandwidth $>60-100 \mathrm{GHz},>19 \mathrm{dBm}$ output power

R. Maurer, et al., "Ultra-wideband mm-Wave InP Power Amplifiers in 130nm InP HBT Technology," in 2016 IEEE CSICS

RF Balun Design

Insertion loss $<3.5 \mathrm{~dB}$, phase error $<4^{\circ}$ over W-band

LO Balun Design

2-4 dB insertion loss over W-band

System Performance Assuming some LNAs

LNA with 18 dB and 12 dB gain

With 18dB gain LNA											
Receiver	units	overall	RFA1	M1	F2	IFA1	IFA2	HFA3	M2	F3	IFA4
Gain	dB	35	18	-8	-1	6.5	0	θ	0.5	-1	20
Gain	linear	3162.28	63.1	0.16	0.79	4.47	1.00	1.00	1.12	0.79	100.00
Noise figure, component	dB		2	8	1	6.2	0.01	θ	10	1	2
Noise factor, component	linear	2.37	1.58	6.31	1.26	4.17	1.00	100	10.00	1.26	1.58
IIP3, component	dBm	0	25	23	100	24.4	100	100	23	100	30
DC Power, component	mW										
antenna-referred IP3 of component	dBm		25	5	90	15.4	84.5	84.5	7.5	84	15
antenna-referred IP3 of system (in-band)	dBm	5									
antenna-referred IP3 of system (out-of-band)	dBm	5									
antenna-referred noise factor contribution	linear	2.37	1.58	0.08	0.03	0.4	0.00	0.00	0.25	0.01	0.02
system noise figure	dB	3.8									
With 12dB gain LNA											
Receiver	units	overall	RFA1	M1	F2	IFA1	IFA2	HFA3	M2	F3	IFA4
Gain	dB	29	12	-8	-1	6.5	0	θ	0.5	-1	20
Gain	linear	794.33	15.85	0.16	0.79	4.47	1.00	1.00	1.12	0.79	100.00
Noise figure, component	dB		2	8	1	6.2	0.01	θ	10	1	2
Noise factor, component	linear	4.72	1.58	6.31	1.26	4.17	1.00	109	10.00	1.26	1.58
IIP3, component	dBm	0	25	23	100	24.4	100	400	23	100	30
DC Power, component	mW										
antenna-referred IP3 of component	dBm		25	11	96	21.4	90.5	90.5	13.5	90	21
antenna-referred IP3 of system (in-band)	dBm	11									
antenna-referred IP3 of system (out-of-band)	dBm	11									
antenna-referred noise factor contribution	linear	4.72	1.58	0.34	0.10	1.59	0.00	0.00	1.01	0.03	0.07
system noise figure	dB	6.7									

Figure 1: Receiver Dynamic Range Analysis with High-Gain and Moderate-Gain LNAs

IIP3 Measurement Setup

Measurement Setup

Spectrum and gain

