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• Motivation for sub-THz frequencies. 

• Prior work at H-band. 

• Potential applications for the amplifier.

• Amplifier design

– unit cell and low-loss compact combiner

• Measurement results 

• Summary and conclusion 
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• Objective: support high data rates. 

• Sub THz (~300GHz)

– More available spectrum-> high data rates.

– Shorter 𝜆: more channels for the same array size.

• Main challenge: high losses (path loss 𝑃𝑅𝛼
𝜆2

𝑅2
𝑒−𝛼𝑅 +interconnect)

• Solution: 

– Phased arrays increase the directivity, the transmission range.

– Use III-V technologies to produce more output power per element.
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• CMOS shows -3.9dBm at 257GHz [1].

• III-V technologies show better performance, though power and efficiency are 
still low.

• Compact, low –loss combiner and high-efficiency power cell 

-> increase the efficiency and Psat/area. 
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Prior Work at H-band 

Ref [1] [5] [7] [8] [2] [10] [9] [4] [6] [11] [3]

Freq, GHz 257 240
185-255

265
325 275-320 338 300-305 300 290-307.5 301 280-328

Psat, dBm -3.9 >10.8
20-23.9

17.2
11.3 2.7-4.8 10 9.5-9.8 8 7.8-10 13.5 9.6-13.7

PAE at Psat% 1.35 5
4.1

0.95
1.1 2.3 1.8 1.1 2.97 1.1 1.5 0.8-2.4

Technology
65nm 

CMOS

35 nm 

GaAs 

mHEMT

250-nm 

InP HBT

130-nm 

InP HBT

35 nm 

InAlAs/InGaAs

50 nm InP 

HEMT

250-nm 

InP HBT

35 nm 

InGaAs 

mHEMT

250-nm 

InP HBT

250-nm 

InP HBT

35 nm 

InGaAs

mHEMT
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• Target ~ 17dBm output power with 4%PAE.

• Pout~17dBm output power per element extends the link range to ~50m*

(8x8 array, vertical and horizontal beam angles=7o)* 

• Candidate PA for subTHz transmitters for long-range applications

• Drivers could be designed in InP or low-cost technologies.

• Measuring equipment->boost the output power of the sources.  
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This Work and Potential Applications

*https://web.ece.ucsb.edu/Faculty/rodwell/Classes/ece218c/ECE218c.htm
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• subTHz amplifier requires fast technologies.  

• fmax=650GHz.

• BVCEo=4.5V.

• Jmax=3mA/µm.

• Four Au interconnect.

• MIM cap (0.3fF/µm2).

• TFR (50Ω/square).
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250nm InP HBT Process, Teledyne [12]

Cross section of TSC250 IC
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• Four-stage amplifier.

• Combine four power cells.

• Driver scaling sustains good PAE. 

• Power combining techniques 

– Parallel combining: 4:1 

transmission line combiner.

– Series combiner: stacked unit cell.
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Power Amplifier Design

1:2 split

1:2 split 1:2 split

4:1 combiner

Stage2,  48m

Stage1, 24m
      HBTperiphery

IN

OUT

Stage3,  96m

Stage4,  96m

(b)

VCCPA

VBBPA

VCCdriver

VBBdriver

Chip micrograph of the amplifier Block diagram of the amplifier
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• Comparison between CE, grounded CB 

and CB with base capacitor

• Simulation under same bias condition

• Large signal simulation is more relevant 

in power amplifier 

• CB with base capacitor shows the highest 

OP1dB with associated PAE

• Design is still challenging. 
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Unit Cell Comparison

Gain*, dB
PAE @

OP1dB
**, %

OP1dB, dBm

CE 4.9 13.6 13.1

Grounded CB 10.8 8.4 9.6

CB with 208f cap 5.6 16 13.7

At 270GHz

*under opt load line condition without compression 

Pout, gain, and PAE for CE, grounded CB, and 

CB with base capacitor. 
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• Shunt inductor: tunes the transistor parasitics.

• The cell requires resistive load impedance (~18W).

• Base capacitance is significantly reduced (~208fF).

– Lower parasitic inductance → higher self resonance frequency.

– Avoid gain uncertainty and stability problems.  
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Unit Cell Design

4x6um

VCC

VBB

Match

Match

tuning cap

Bypass cap

series tuning

shunt tuning

bias line

Schematic of the unit cell

ZL~18W
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• Proposed combiner

– Single 𝜆/4 section->very compact

– Low loss 

– Works with non 50W cells

– Smaller BW compared to Wilkinson
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Combiner Design 

Proposed combiner

• Wilkinson 

– Two  𝜆/4 sections-> Bulky

– High loss and skinny line

– Works only with 50W cells

– Higher BW

Wilkinson combiner
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• Low loss 4:1 transmission line combiner.

• Transforms 50W to the required loadline impedance for each cell using a 

single 𝜆/4 transmission line. 

• Each two cells are combined by a TL with negligible electrical length.

• The required impedance for the two combined cells is 18/2W.

• The quarter line’s impedance is chosen to transform 100W to 18/2W.

Combiner Design 
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Chip micrograph of the proposed combiner Chip micrograph of the proposed combiner 
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• Setup:  PNA with 220-325GHz Oleson extender modules.

• Measured 3-dB bandwidth=48GHz.
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Measurement Results: s-parameters 
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• 110-170GHz VDI+ doupler->270-290GHz-> coupler

• Input power is sensed by the coupler and monitored by the spectrum analyzer

• Power is varied by changing the signal generator power.
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Power Measurement: setup 
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• Correction factor=power difference between the power meter and spectrum 

analyzer readings.
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Calibration phase 

Calibration
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• Sweep the signal generator power.

• Report the spectrum analyzer readings + correction factors=input power. 

• Report the power meter reading.

• The power meter readings +probe losses= amplifier output power 
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Measurement Phase

Measurement
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• Many points are recorded at different frequencies.

• At 270GHz: Pout=16.8dBm, 4%PAE 

• No heatsink was used.

• Better performance is expected

with proper heatsinking. 
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Power Measurement Results
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• More points are taken at different frequencies.

• Psat=14-16.8dBm, with PAE=2.2-4% over 266-285GHz
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Power Measurement Results
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• This work shows a record Psat/mm2 over 266-285GHz frequency range.  
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State-of-the-art results 
Ref [5] [7] [8] [2]a [10] a [9] [4] [6] [11] [3] This work

Freq, GHz 240
185-255

265
325 275-320 338 300-305 300 290-307.5 301 280-328 266-285

Psat, dBm >10.8
20-23.9

17.2
11.3 2.7-4.8 10 9.5-9.8 8 7.8-10 13.5 9.6-13.7 14-16.8

Gain at

Psat (dB)
15

12.2-17

11.7
9.4 13.5-15 3.3 7.5-7.8 11 10-12 11.8 11.5-13.8 9.6-10.9

PAE at Psat% 5
4.1

0.95
1.1 2.3d 1.8 1.1 2.97 1.1 1.5 0.8-2.4 2.2-4

BW3dB, GHz 55 53c 9 ~100c 10 40 57 21 15c 48c 48

Chip Size 

(mmxmm)
1.5x0.75 2.14x1.58 0.98x1 0.5x1.35 2x0.75

0.55x0.5

5b 2x0.75 1.45x0.44 0.67x0.68 0.6x1.3b 1.08x0.77

PDC (W) - 5.24 1.12 0.129d 0.29 0.72 0.2 0.85 1.49 - 1.09

Psat/Area

mW/mm2 10.6
72.5

15.7
13.9 4.5 6.66 31.6 4.2 15.7 22.3 30 57.6

Technology

35 nm 

GaAs 

mHEMT

250-nm 

InP HBT

130-nm 

InP HBT

35 nm 

InAlAs/InGaAs

50 nm InP 

HEMT

250-nm 

InP HBT

35 nm 

InGaAs 

mHEMT

250-nm 

InP HBT

250-nm 

InP HBT

35 nm 

InGaAs 

mHEMT

250-nm 

InP HBT

amodule results
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• Record Psat/area at H-band

• Common base cell with finite base impedance shows a 

good performance at subTHz frequency.

• Transmission line combiner are compact and have low 

losses

• Careful EM simulation is necessary to get accurate results

• Millimeter wave communication becomes more feasible. 
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Summary
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More Details: power amplifier family
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[14] 130GHz, 200mW, 17.8%PAE [13] 140GHz, 20.5dBm, 20.8% PAE This work[15] 194GHz, 17.4dBm, 8.5%PAE 

• Record output power and efficiency (125-285GHz) 


