

135GHz CMOS / LTCC MIMO Receiver Array Tile Modules

Ali A. Farid^{1,2}, Ahmed S. H. Ahmed^{1,3}, Aditya Dhnanjay⁴, Mark J. W. Rodwell¹

> ¹University of California, Santa Barbara, USA ²Intel Corporation, USA ³Marki Microwave, USA ⁴Tandon school of Engineering, NYU, USA

Outline

- Motivation
- IC-Package Interconnect technology
- Interposer Stack build up
- Integrated Receiver module
- Module Wireless Link Experiment
- Conclusion

A. Farid at al, RWS2021

- Large available spectrum ()
- Massive # of parallel channels, Multiple independent beams
- Low-cost high-performance packaging (?)

IC and Package Interconnect

- Direct Conversion RX in GF-22FDSOI
- 20GHz 3-dB BW
- 27dB Conversion gain

Туре	Transition Loss/ Frequency	Technology	Cost	Heatsinking	
(ball) wirebonds	100 GHz X	Industry standard	low	good	
ribbon, mesh bond	200 GHz	Handcrafted	high X	good	SLSLSTER
patch antennas on superstrate	1000 GHz	Straightforward	low	good	And the second s
Cu stud flip-chip	>200 GHz	Industry standard	low	ОК	

Mark Rodwell, "100-300GHz Wireless: Transistors, ICs, packages, systems."6G Workshop, IEEE RF/Wireless Week (RWW2021), 17 - 20 January San Diego, California, USA

IC and Package Interconnect

A. Farid at al, RFIC2019

A. Farid at al, BCICST2021

- Chip bonded to LTCC carrier using 50µm diameter copper pillar
- Pillars equally spaced at 125µm
- IC-package transition loss of 1dB

MIMO 1-D Array Tile

Challenges with the PCB approach

Issues

Lessons learned

Difficulty in bonding copper studs to PCB

- Over etched boards/poor quality
- Wider solder mask opening
- Thick solder mask layers

- PCB unsuitable for copper pillars
- High resolution PCB is expensive

Integrated Receiver Module on LTCC

- 4 channels/side
- 8-elements series fed-patch antenna/channel
- 0.65λ antenna spacing
- I/Q, LO, DC signals routed from LTCC to PCB using AL wirebonds (1.25mil)

Module Calibration and Testing Setup

- Rx module connected to ZCU-111 for array calibration and beamforming.
- Test transmitter mounted at 15cm distance on a rotating arm.
- Wideband 1-GHz OFDM signal used for array calibration (explain briefly)

https://github.com/pi-radio/Pi-Radio-v1-NRT https://dl.acm.org/doi/abs/10.1145/3411276.3412195

Module Conversion Gain & Radiation Pattern

floating ground!

1.3 λ antenna spacing (Limited F.O.V)

Receiver Module Wireless Link

In single-beam operation: there is –

- 13.5dB RMS EVM in 1.34Gb/s QPSK
- 13dB EVM, RMS in 1.92Gb/s 16QAM

What is limiting Module datarate?

Comparison with state of the art

D22 BCICTS 2021 Virtual. CA					
Distance	10cm			15m	6cm
Link	Air	WR-6	Air	Air	Air
EVM		-23dB -30dB	6.25% 5.5%	NA	
Format	16QAM	64QAM /256QAM	QPSK 64QAM	16QAM	QPSK
Data rate	80Gb/s	36Gb/s 8Gb/s	16Gb/s 18Gb/s	6Gb/s	2x16Gb/s
Antenna	Yes	No	Yes	Yes	Yes
# of channels	2	1	8	4,8, and 16	2
Туре	1 Channel	1 Channel	Single beam	MIMO\$	2x2 LOS MIMO
Package Technology	PCB	Radio on Glass	Quartz Superstrate	PCB	PCB + Lens
IC Technology	28nm CMOS	0.13µm SiGe	45nm SOI	45nm SOI	0.13µm SiGe
Freq (GHz)	113	115-155 135-170	140	140	135
	CICC2020	RFIC2020	IMS2021	ICC2021	RFIC2020
	Townley	Singh	Sli	Abu-Surra	Sawaby

Conclusion

- Packaging approach for massive MIMO arrays in Tile
- Assembly challenges with advanced copper pillars
- Why PCB approach is not the right candidate
- Tile of 8-elements with 3Gb/s per beam

Authors would like to thanks

- Kyocera Japan for ceramic interposer fabrication
- Kyocera San Diego for module assembly
- GlobalFoundries for CMOS chip fabrication and free access to advanced copper pillars

This work was supported in part by the Semiconductor Research Corporation and DARPA under the JUMP program. 7/5/2022 BCICTS 2021 Virtual, CA Slide 14

Questions?