

A 200 GHz InP HBT Direct-Conversion LO-Phase-Shifted Transmitter/Receiver with 15 dBm Output Power

Munkyo Seo¹, Ahmed S. H. Ahmed^{2,3}, Utku Soylu³, Ali Farid³, Yunsik Na¹, and Mark Rodwell³

¹Dept of ECE, Sungkyunkwan University, South Korea ²Marki Microwave Inc., USA

³Dept of ECE, University of California, Santa Barbara, USA

Outline

- Motivation
- Overview
- Transceiver circuit design
- Measured results
- Summary

Wireless Communication @ 200 GHz

Motivation

- -Large available BW \rightarrow High data rate (6G)
- -Low atmospheric loss @ 200 GHz band

Challenges

- -Short wavelength \rightarrow High path loss
- –Low transistor gain \rightarrow Low efficiency \rightarrow Low battery life

Proposed 200 GHz transceiver

- -InP-HBT \rightarrow High P_{out} & high efficiency
- -Mixed use of normal & inverted microstrip
- –Integrated LO phase shifter \rightarrow Phased-array

<We<u>2F.2></u>

6 - 11 June 2021, Atlanta, GA

Proposed 200 GHz Transmitter / Receiver

200 GHz direct-conversion TX

- PA & LNA: Normal microstrip for best PAE and lowest NF
- Mixer, LO multiplier, phase shifter: Inverted microstrip for low-inductance ground
- Integrated LO phase shifter enables phased-array operation of multiple ICs

200 GHz direct-conversion RX

200 GHz PA Design

PA schematic

PA layout

Size: 850 x 550 µm²

- 4-stage common-base w/ C_{base}
 - Higher efficiency @OP1dB than common-emitter
 - Higher efficiency @OP1dB than common-base with no C_{base}
- Low-loss 2:1 combiner w/ a single $\lambda/4$ line & shunt L
- Sim: $P_{sat} = 17dBm@200GHz$, $S_{21} > 20dB$, $P_{DC} = 450mW$

200 GHz LNA Design

3-stage LNA layout

Size: 350 x 250 µm²

- 3-stage common-base (CB)
- Base cap. adjusted for simultaneous noise & S₁₁ matching
- Emitter length scaled for minimum input matching loss
- Simulation: $S_{21} = 15$ dB, 3-dB BW = 35GHz, $P_{DC} = 14$ mW

LO Frequency Multiplier Design

x8 LO multiplier schematic

Size: 580 x 400 µm²

- Cascade of three push-push doublers \rightarrow x8 LO multiplier
- Capacitive emitter degeneration \rightarrow Operates with wider ranges of P_{in}
- Simulation: $P_{out} > 0dBm$ for 180-230GHz (BW = 50GHz), $P_{DC} = 250mW$

200 GHz LO Phase Shifter

Phase shifter layout

Size: 300 x 400 μm^2

- Vector-modulator-based phase shifter
- Wideband operation by using Lange coupler
- Sim: I/Q phase error < 2deg, mag. error < 0.3dB for 170-250GHz, $P_{DC} = 100$ mW

8

- 140-220 GHz (WR5) on-wafer testing
- Simultaneous freq. & power testing
- TX used as a calibration reference

9

Measured TX Conversion Gain

- Peak conversion gain = 34 dB
- 3-dB bandwidth > 20 GHz
- LO multiplier tuning bandwidth > 30 GHz

Measured TX Output Power

- $P_{sat} = 16.5 \text{ dBm} @ f_{RF} = 195 \text{ GHz}, 15.3 \text{ dBm} @ f_{RF} = 200 \text{ GHz}$
- P_{DC} = 1,250 mW

Receiver Testing Setup

- 140-220 GHz (WR5) on-wafer testing
- Simultaneous freq. & power testing
- RX driven by multiplier & variable attenuator

Measured RX Conversion Gain

- Peak conversion gain = 25 dB
- LO multiplier tuning bandwidth > 25 GHz

Measured RX Power & Noise Figure

- Input $P_{1dB} = -24 \text{ dBm}$
- $P_{sat} = +1 \text{ dBm}$
- P_{DC} = 825 mW

Performance Comparison of Transmitter

- 200 GHz direct-conversion transmitter / receiver in InP HBT
- Highest P_{out} and efficiency, among all integrated TX beyond 200 GHz
- Modulated testing is under way

Acknowledgement

 This work was supported by ComSenTer, a JUMP program sponsored by the Semiconductor Research Corporation, by a gift from Samsung corporation and by the Samsung Electronics, under the Grant SRFC-TB1803-06.

• The authors thank Teledyne Scientific & Imaging for the IC fabrication.

Thank you very much!

References

[1] M. J. W. Rodwell et al., "100-340GHz Systems: Transistors and Applications," in Proc. IEEE IEDM, 2018, pp. 14.3.1-14.3.4

[2] M. Abbasi et al., "Single-chip 220-GHz active heterodyne receive and transmitter MMICs with on-chip integrated antenna," IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 2, Feb. 2011.

[3] D. Lopez-Diaz et al., "A subharmonic chipset for gigabit communication around 240 GHz," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3.

[4] Z. Wang, P. Chiang, P. Nazari, C. Wang, Z. Chen and P. Heydari, "A CMOS 210-GHz Fundamental Transceiver with OOK Modulation," in *IEEE Journal of Solid-State Circuits*, vol. 49, no. 3, pp. 564-580, March 2014.

[5] S. Kang, S. V. Thyagarajan and A. M. Niknejad, "A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS," in *IEEE Journal of Solid-State Circuits*, vol. 50, no. 10, pp. 2256-2267, Oct. 2015.

[6] S. Kim *et al.*, "300 GHz Integrated Heterodyne Receiver and Transmitter with On-Chip Fundamental Local Oscillator and Mixers," in *IEEE Transactions on Terahertz Science and Technology*, vol. 5, no. 1, pp. 92-101, Jan. 2015.

[7] N. Sarmah *et al.*, "A Fully Integrated 240-GHz Direct-Conversion Quadrature Transmitter and Receiver Chipset in SiGe Technology," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 64, no. 2, pp. 562-574, Feb. 2016.

[8] D. Fritsche, P. Stärke, C. Carta and F. Ellinger, "A Low-Power SiGe BiCMOS 190-GHz Transceiver Chipset with Demonstrated Data Rates up to 50 Gbit/s Using On-Chip Antennas," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 65, no. 9, pp. 3312-3323, Sept. 2017.

[9] S. Lee et al., "An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3577-3588, Dec. 2019.

[10] P. Rodríguez-Vázquez, J. Grzyb, B. Heinemann and U. R. Pfeiffer, "A 16-QAM 100-Gb/s 1-M Wireless Link with an EVM of 17% at 230 GHz in an SiGe Technology," in *IEEE Microwave and Wireless Components Letters*, vol. 29, no. 4, pp. 297-299, April 2019.

[11] P. Rodriguez-Vazquez, J. Grzyb, B. Heinemann and U. R. Pfeiffer, "A QPSK 110-Gb/s Polarization-Diversity MIMO Wireless Link With a 220–255 GHz Tunable LO in a SiGe HBT Technology," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 68, no. 9, pp. 3834-3851, Sept. 2020.

[12] M. H. Eissa, N. Maletic, E. Grass, R. Kraemer, D. Kissinger and A. Malignaggi, "100 Gbps 0.8-m Wireless Link based on Fully Integrated 240 GHz IQ Transmitter and Receiver," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 627-630.

[13] H. Hamada et al., "300-GHz-Band 120-Gb/s Wireless Front-End Based on InP-HEMT PAs and Mixers," in IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2316-2335, Sept. 2020.

[14] A. S. H. Ahmed, M. Seo, A. A. Farid, M. Urteaga, J. F. Buckwalter and M. J. W. Rodwell, "A 140GHz power amplifier with 20.5dBm output power and 20.8% PAE in 250-nm InP HBT technology," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 492-495.

[15] A. S. H. Ahmed, U. Soylu, M. Seo, M. Urteaga, J. F. Buckwalter and M. J. W. Rodwell., " A 190-210GHz Power Amplifier with 17.7-18.5dBm Output Power and 6.9-8.5% PAE.," in press, *Proc.* IMS2021.

[16] A. S. H. Ahmed, M. Seo, A. A. Farid, M. Urteaga, J. F. Buckwalter and M. J. W. Rodwell, "A 200mW D-band Power Amplifier with 17.8% PAE in 250-nm InP HBT Technology," 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021, pp. 1-4.

[17] Y. Xing et al., "Propagation measurement system and approach at 140 GHz – Moving to 6G and above 100 GHz," 2018 IEEE Global Communications Conference.

Performance Comparison

Ref.	Technology	Integrated TX circuit blocks	Freq. (GHz)	P _{sat} (dBm)	P _{DC} (mW)	Efficiency (%)
[2]	0.1µm GaAs mHEMT	IF-mixer, LO multiplier (×2), PA, antenna	220	-6	110	0.23
[3]	50nm GaAs mHEMT	IF-mixer, PA	240	1	N/A	N/A
[4]	32nm SOI CMOS	LO VCO, OOK mod, PA, antenna	210	4.6	240	1.20
[5]	65nm CMOS	IQ-mixer, tripler	240	-0.5	220	0.41
[6]	250nm InP-HBT	IF-mixer, LO driver, LO oscillator	298.1	-2.3	452	0.13
[7]	130nm SiGe	IQ-mixer, LO multiplier (×16), PA	240	-4.4	1,033	0.04
[8]	130nm SiGe	Mixer, LO driver, antenna	190	-6	32 ¹	0.78
[9]	40nm CMOS	IQ-mixer, LO multiplier (×3)	265.68	-1.6	890	0.08
[10]	130nm SiGe	IQ-mixer, LO multiplier (×16), PA	220-255	5	960	0.33
[11]	130nm SiGe	IQ-mixer, LO multiplier (×16), PA	225-255	7.5	960 ²	0.59
[12]	130nm SiGe	IQ-mixer, LO multiplier (×8), PA	240	12 ⁴	1,237	1.28
[13]	80nm InP-HEMT	IF-mixer, LO driver, PA ³	290	12	6,600	0.24
This	250nm InP-HBT	IQ-mixer, LO multiplier (×8), phase shifter, PA	195	16.5	1,250	3.57
work			200	15.3	1,250	2.71

¹P_{DC} not including LO generator at 190 GHz ²P_{DC} for 1-channel I-Q TX+LO ³Individually packaged, not integrated

