

## WSB: 100-300GHz systems: Architectures and Applications



**Com Sen Ter** 

Mark Rodwell University of California, Santa Barbara rodwell@ece.ucsb.edu

Acknowledgement: This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.









### Acknowledgements









### **JUMP + nCORE** Official Sponsors





nuisc

5



## 100-300GHz Wireless

#### Wireless networks: exploding demand.

#### Immediate industry response: 5G.

~10~40 GHz ("5G") ~40~100GHz ("5.5G ?") increased spectrum, extensive beamforming

### Next generation (6G ??): above 100GHz.. (?)

greatly increased spectrum, massive spatial multiplexing



#### 100-300GHz carriers, massive spatial multiplexing → Terabit hubs and backhaul links, high-resolution imaging radar Range/Doppler $\Delta\theta \propto \lambda/L$ spatially-multiplexed mm-wave base stations MIMO array mm-wave backhaul ar-field pattern: mm-wave $N \propto L^2 / \frac{\lambda R}{\lambda R}$ ngle-beam receive endpoint single-beam MIMO arravs receiver far-field detection on each face transmitte MIMO far-field illumination $N \propto L/\lambda$ array or optical backhaul



WSB: 100-300GHz mm-wave wireless for 0.1-1Tb-s networks



## Benefits of Short Wavelengths

ARFTO

**Communications:** Massive spatial multiplexing, massive # of parallel channels. Also, more spectrum!



#### Imaging: very fine angular resolution



#### **But:**

High losses in foul or humid weather. High  $\lambda^2/R^2$  path losses. ICs: poorer PAs & LNAs. Beams easily blocked.

100-340GHz wireless: terabit capacity, short range, highly intermittent





#### Wireless above 100 GHz:

Massive capacities large available bandwidths <u>massive</u> <u>spatial</u> <u>multiplexing</u> in base stations and point-point links

#### Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

#### IC Technology

All-CMOS for short ranges below 200 GHz. SiGe, GaN, or III-V LNAs and PAs for longer-range links. Just like cell phones today SiGe or III-V frequency extenders for 220GHz and beyond

#### The challenges

digital beamformer computational complexity packaging: fitting signal channels in very small areas mesh networking to accommodate beam blockage driving the technologies to low cost





# Applications





## Potential 100-300GHz Systems



#### 140GHz MIMO Hub



140 or 210GHz Imaging Radar



210 or 280GHz MIMO Backhaul





International Microwave Symposium 6 - 11 June 2021, Atlanta, GA 8

WSB: 100-300GHz mm-wave wireless for 0.1-1Tb-s networks



WSB: 100-300GHz mm-wave wireless for 0.1-1Tb-s networks

## 140GHz moderate-MIMO hub





If demo uses 32-element array (four 1×8 modules): 16 users/array. P<sub>1dB</sub>=21 dB<sub>m</sub> PAs, F=8dB LNAs 1,10 Gb/s/beam→ 16, 160 Gb/s total capacity 70, 40 m range in 50mm/hr rain with 17dB total margins



Range varies as (# hub elements)<sup>0.5</sup>  $\rightarrow$  (Service area/element) is constant



If we use instead a 70GHz carrier, the range increases to **168 meters** (vs. **100 meters**) but the handset becomes 16mm×16mm (vs. 8mm×8mm), and the hub array becomes 20mm×524mm (vs. 10mm×262mm)

Or, use a 4×4 (8mm×8mm) handset array, and the range becomes ..**100 meters**.

Same handset area (more handset elements)→ same link budget Easier to obtain license for 140±2.5GHz than 75±2.5GHz



## 220 GHz, 640 Gb/s MIMO Backhaul





#### 8-element MIMO array

3.1 m baseline.
80Gb/s/subarray → 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

#### Key link parameters

500 meters range in 50 mm/hr rain; 23 dB/km 24 dB total margins: packaging loss, obstruction, operating, design, aging PAs: 24mW P<sub>out</sub> (per element) LNAs: 6dB noise figure

## 210 GHz, 5.1 Tb/s MIMO backhaul

500m range in 50mm/hr. rain.

8-element 640Gb/s linear array: requires 14dB<sub>m</sub> transmit power/element (P<sub>out</sub>) ....3.2W total output power requires 2.1m linear array

#### 64-element 5Tb/s square array:

same link assumptions requires 5dB<sub>m</sub> transmit power/element (P<sub>out</sub>) ....3.2W total output power requires 2.1m square array

Complex system: can we make it cheaply ?









## 70 GHz, 640 Gb/s MIMO backhaul (16QAM)

Why not use a lower-frequency carrier, e.g. 70 GHz?

8-element 640Gb/s linear array: requires **11dB**<sub>m</sub> transmit power/element (P<sub>out</sub>) ....1.7W total output power requires 5.5m linear array

64-element 5Tb/s square array: same link assumptions requires 2dB<sub>m</sub> transmit power/element (P<sub>out</sub>) ....1.7W total output power requires 5.5m square array

### Similar RF power output, physically larger





## **Systems**



ADCs/DACs: only 3-4 bit ADC/DACs required (Madhow, Studer, Rodwell)

System Design

- **Linearity**: Amplifier P<sub>1dB</sub> need be only 3dB above average power (Madhow).
- Phase noise: Requirements same as for SISO (Alon, Madhow, Niknejad, Rodwell)
- Efficient digital beamforming: beamspace algorithm=complexity ~N× log(N) (Madhow, Studer)
- Efficient digital beamforming: low-resolution matrix (Studer)
- **Efficient channel estimation** : fast beamspace algorithm (Studer)
- Efficiently addressing true-time-delay problem: "rainbow" FFT algorithm (Madhow, Cabric, Studer)



11 June 2021, Atlanta, GA







#### **ADC resolution:**

N ADC bits, M antennas, K signals:  $SNR=6N+1.76+10 \cdot \log_{10}(M/K)$ 3 bits,  $(M/K)=2 \rightarrow SNR=23$  dB. QPSK needs 9.8 dB.

#### Jammer tolerance:

Increase ADC resolution by 1 bit  $\rightarrow P_{jammer,max} = K \cdot P_{signal}$ Maximum jammer power = sum of all user's power.

#### Phase noise:

Phase error  $\sigma_{\phi}$ : SNR= -20·log<sub>10</sub>( $\sigma_{\phi}$ )+10·log<sub>10</sub>(*M/K*), where  $\sigma_{\phi}^2 = \int_{f_{low}} L(f)df$ . MIMO and SISO require similar L(f).

#### Beamspace:

lower frequencies, many NLOS paths, complicated channel matrix:  $O(M^3)$  to beamform higher frequencies, few NLOS paths, simpler channel matrix: FFT,  $O(M \cdot \log M)$  to beamform fewer bits in signal; fewer bits in FFT coefficients.

 $f_{symbol}/2$ 









## Transistors





## 100-1000 GHz Transistors and ICs



|                 | f <sub>max</sub><br>GHz | Good ICs<br>to (GHz) | complexity     | LNAs  | PAS               | increased<br>bandwidth ? |
|-----------------|-------------------------|----------------------|----------------|-------|-------------------|--------------------------|
| CMOS            | 350                     | 150/200              | transceivers   | good  | weak: 10-30 mW    | not easy                 |
| Production SiGe | 300                     | 200/250              | transceivers   | ok    | OK: 20-100 mW     | depends on \$\$          |
| R&D SiGe        | 700                     | 300/500              | transceivers   | good  | OK: 20-100 mW     | 2-3THz                   |
| R&D InP HBT     | 1150                    | 400/650              | PA, converters | ok*   | good: 100-200 mW  | 2-3THz                   |
| R&D InP HEMT    | 1500                    | 500/1000             | LNA            | great | weak: 20-50 mW    | 2-3THz                   |
| R&D GaN         | 400                     | 120/140              | PAs            | good  | excellent: 0.1-1W | 600GHz                   |

ICs with useful performance, hero experiments

\*can be addressed

There are THz transistors today; their bandwidth will increase

### Challenge: reducing costs, increasing market size

## mm-Wave CMOS won't scale much further





**Shorter gates give no less capacitance** dominated by ends; ~1fF/µm total



Maximum  $g_m$ , minimum  $C \rightarrow$  upper limit on  $f_{\tau}$ . about 350-400 GHz.

#### Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

#### Present finFETs have yet <u>larger</u> end capacitances



# All 2021

## mm-Wave Transistor Development



#### InGaN and GaN HEMTs:

High power from 100-340GHz GaN: superior power density at all frequencies

#### THz InP HBTs:

State-of-art: 1.1THz  $f_{max}$  @ 130nm node Efficient 100-650GHz power more  $f_{max}$ : more efficient, higher frequencies base regrowth: better contacts  $\rightarrow$  higher  $f_{max}$ . status: working DC devices; moving to THz







N-polar GaN: Mishra, UCSB

THz InP HEMTs:

State-of-art: 1.5THz  $f_{max}$  @ 32nm node Sensitive 100-650GHz low-noise amplifiers more  $f_{\tau}$ : lower noise, higher frequencies high-K gate dielectric  $\rightarrow$  higher  $f_{\tau}$ ,  $f_{max}$ 



() International Microwaya Summ

WSB: 100-300GHz mm-wave wireless for 0.1-1Tb-s networks

# ICs and Packages: 140 GHz



## The mm-wave module design problem



How to make the IC electronics fit ? How to avoid catastrophic signal losses ? How to remove the heat ?

Not all systems steer in two planes... ...some steer in only one.

Not all systems steer over 180 degrees... ...some steer a smaller angular range







## 140GHz hub: packaging challenges





**IC-package interconnects** Difficult at > 100 GHz

**Removing heat** Thermal vias are marginal

Interconnect density

Dense wiring for DC, LO, IF, control. Hard to fit these all in.

#### **Economies of scale**

Advanced packaging standards require sophisticated tools High-volume orders only Hard for small-volume orders (research, universities) Packaging industry is moving offshore









## 100-300GHz IC-package connections



| Ϋ́ζ                         | 2000                                                                                                | 100 |                                                               |              |                              |           | Krit                        |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------|--------------|------------------------------|-----------|-----------------------------|
| ans T                       |                                                                                                     | 100 | type                                                          | Frequency    | technology                   | cost      | heatsinking                 |
| Deal, IEEE Tra<br>Sept 2011 |                                                                                                     |     | <ul> <li>micromachined<br/>waveguide<br/>interface</li> </ul> | 1000 GHz     | Research.<br>Cheap one day ? | high<br>X | good                        |
|                             | Silicon wafer (Quartz dielectric)                                                                   |     | – ribbon, mesh bond                                           | 200 GHz      | Handcrafted.                 | high<br>X | good                        |
|                             | Antenna element<br>(microstrip or dipole)<br>Phased array unit element<br>with on-chip antenna feed |     | _ patch antennas<br>on superstrate                            | 1000 GHz     | Straightforward              | low       | good                        |
|                             |                                                                                                     |     | - Cu stud flip-chip                                           | >200 GHz     | Industry standard            | low       | ok,<br>marginal for PA<br>X |
| /                           |                                                                                                     |     | <sup>—</sup> hot vias                                         | 200 GHz      | Development                  | low?      | good                        |
| 10000                       |                                                                                                     |     | <ul> <li>(ball) wirebonds</li> </ul>                          | 100 GHz<br>🗙 | Industry standard            | low       | good                        |
|                             |                                                                                                     |     |                                                               |              |                              |           | sium                        |



## 140GHz CMOS+InP MIMO hub array tile



**110mW InP Power Amplifier** LTCC Array module 20.8% PAE



#### **190mW InP Power Amplifier** 16.7% PAE



Teledyne InP HBT





1 cm



## 140GHz transmitter channel



#### CMOS-only TX channel



|              | *     | *      | ×  | Ŕ    | .4  | \$  | 0:0      | 0  | 0 0  |     | 3        | 10  | 0        |
|--------------|-------|--------|----|------|-----|-----|----------|----|------|-----|----------|-----|----------|
|              |       |        | 1  | *    | ۶.  | *   | 9        |    | 0    |     | 0"<br>8" | 4.0 | 9.<br>0. |
|              | *     | *      | A  | :Þ.  | 0   | *   | 00       |    | 0    |     | 4        | •   | ð.       |
|              |       |        | *. | *    |     | -9  | а<br>•С. | P  | 0, 1 |     | 0        | 0   |          |
| rate         | 4 G   | baud   |    | 4 G  | bau | d   |          |    | 2C   | iba | ud       |     |          |
| power        | 3dB b | ackoff | 6  | dB b | ack | off |          | 8d | B    | bac | kc       | off |          |
| EVM<br>(RMS) | 7.    | 9%     |    | 9.   | 2%  |     |          |    | 7    | .4% | 6        |     |          |

#### CMOS+InP TX channel





135GHz Transmitter's EIRP Vs Pin



EIRP =19dBm/ 6dB-BO from Psat 16QAM (5G Baud) QPSK (5G Baud) 64QAM (5G Baud) Rna 24 m Rng 24 m Rng 24 mV 10 .10 A 10.00 AT 10.17 8 3 A 6 44 3 A A Q A 4 1 2.2164179104 2.2164179104 2 2164179 2 2164170 -2.2164179 2.2164179104 7.69% (RMS) 8.4% (RMS) 8.5% (RMS)



## 140GHz MIMO Receiver Array Tile















33

### 8-Channel 140GHz MIMO hub modules being tested.







# ICs and Packages: 210 & 280 GHz







### 210 GHz MIMO backhaul demo





#### 8-element MIMO array

3.1 m baseline for 500m link.
80Gb/s/subarray → 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

#### Key link parameters

500 meters range in 50 mm/hr rain; 23 dB/km 20 dB total margins: packaging loss, obstruction, operating, design, aging PAs: 63mW =P<sub>1dB</sub> (per element)



## ICs for 210GHz and 280GHz MIMO links





**Technology:** Teledyne 250nm InP HBT.

## 2D arrays





### The 100-300GHz 2D Array Challenge



Single-beam: simpler RF front-end, simpler baseband MIMO: complex digital baseband, flexible, many beams

**Arrays** can be made from either **tiles** or **trays** 

Arrays must be vast: 100-1,000-10,000 elements

**Arrays must be dense: packaging challenges** Many DC/IF/LO lines, plus antenna interface. Fitting IC functions into available area. Removing the heat.

| f    | 100 | 150 | 200  | 250  | 300 | GHz |
|------|-----|-----|------|------|-----|-----|
| λ    | 3   | 2   | 1.5  | 1.2  | 1   | mm  |
| λ/2  | 1.5 | 1   | 0.75 | 0.6  | 0.5 | mm  |
| 0.6λ | 1.8 | 1.2 | 0.9  | 0.72 | 0.6 | mm  |





hot via

IF I/O lines,

DC power.

IC-package



## 100-300GHz array frequency scaling



 $\frac{A_t A_r}{2} e^{-\alpha R} \cdot P_{trans}$ 

→ #beams · (bit rate per beam) ·  $kTF \cdot SNR = \frac{A_t A_r}{2^2 R^2} e^{-\alpha R} \cdot P_{trans}$ 

(Worst-case atmospheric loss: ~constant over 50-300GHz)

| Proposed scaling law                                                                                                                                    | change                                                                                           | Implication                                                         | change         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|
| carrier frequency                                                                                                                                       | increase 2:1                                                                                     | capacity (# beams·bit rate per beam)                                | increases 4:1  |
| aperture area                                                                                                                                           | keep constant                                                                                    | number elements                                                     | increases 4:1  |
| total transmit power                                                                                                                                    | keep constant                                                                                    | RF power per cm <sup>2</sup> aperture area                          | stays constant |
| 100GHz 200GHz                                                                                                                                           |                                                                                                  | RF power per element                                                | decreases 4:1  |
|                                                                                                                                                         |                                                                                                  | IC area/element (tiled array)                                       | decreases 4:1  |
| 1W 1W                                                                                                                                                   |                                                                                                  | IC area/element (trayed array)                                      | decreases 2:1  |
| ▲                                                                                                                                                       |                                                                                                  | IC power/area (tiled array)                                         | stays constant |
| radiated signal                                                                                                                                         |                                                                                                  | IC power/area (trayed array)                                        | decreases 2:1  |
| hot via<br>IC-package<br>interconnects<br>Beamformer IC<br>High-thermal-<br>conductivity<br>arrier<br>IF I/O lines,<br>LO reference lines,<br>DC power. | ate 0.05λ<br>air ga<br>LO, BB, DC<br>0.5λ<br>copper<br>carrier<br>die-attach<br>solder:<br>0.05λ | transceiver<br>p<br>IC<br>antenna<br>substrate<br>0.1λ<br>1<br>0.5λ |                |

WSB: 100-300GHz mm-wave wireless for 0.1-1Tb-s networks

# 100-300GHz Wireless





#### Massive capacities

large available bandwidths <u>massive spatial multiplexing</u> in base stations and point-point links

#### Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

#### **IC Technology**

All-silicon for short ranges below 200 GHz. III-V LNAs and PAs for longer-range links. Just like cell phones today III-V frequency extenders for 340GHz and beyond

#### The challenges

computational complexity packaging: fitting signal channels in very small areas mesh networking to accommodate beam blockage driving the technologies to low cost





(backup files follow)