6G Workshop, IEEE RF/Wireless Week, January 2021, online.

100-300GHz Wireless: Transistors, ICs, packages, systems.

Mark Rodwell, UCSB

Harish Krishnaswami: Columbia University Debdeep Jena, Alyosha Molnar, Christoph Studer, Huili Xing: Cornell University Dina Katabi: MIT Sundeep Rangan: New York University Amin Arbabian, Srabanti Chowdhury: Stanford Elad Alon, Ali Niknejad, Borivoje Nikolic, Vladimir Stojanovic: University of California, Berkeley Danijela Cabric: University of California, Los Angeles Gabriel Rebeiz: University of California, San Diego Jim Buckwalter, Upamanyu Madhow, Umesh Mishra, Mark Rodwell, Susanne Stemmer: University of California, Santa Barbara Andreas Molisch, Hossein Hashemi: University of Southern California Kenneth O: University of Texas, Dallas

JUMP Team and their roles

ComSenTer COMMUNICATIONS SENSING TERAHERTZ

Beyond-5G Wireless

Wireless networks: exploding demand.

Immediate industry response: 5G.

~10-100GHz carriers. increased spectrum, extensive beamforming

Next generation (6G ??): above 100GHz.. greatly increased spectrum, massive spatial multiplexing

JUMP Centers: research commercialized in 15 years

Range/Doppler

ComSenTer: 100-300GHz carriers, massive spatial multiplexing → Terabit hubs and backhaul links, high-resolution imaging radar

Benefits of Short Wavelengths

Communications: Massive spatial multiplexing, massive # of parallel channels. Also, more spectrum!

Imaging: very fine angular resolution

But:

High losses in foul or humid weather. High λ^2/R^2 path losses. ICs: poorer PAs & LNAs. Beams easily blocked.

100-340GHz wireless: terabit capacity, short range, highly intermittent

100-300 GHz: Applications

100-300GHz: Demonstration Systems

MIMO hub: 140GHz

Point-point MIMO: 210, 280GHz

Cross-linear-array imaging: 210, 280GHz

UCSB FCC permit: 137 +/- 15 GHz, 210 +/- 15 GHz, 280 +/- 15 GHz

140GHz massive MIMO hub

70 GHz spatially multiplexed base station

If we use instead a 70GHz carrier, the range increases to **168 meters** (vs. **100 meters**) but the handset becomes 16mm×16mm (vs. 8mm×8mm), and the hub array becomes 20mm×524mm (vs. 10mm×262mm)

Or, use a 4×4 (8mm×8mm) handset array, and the range becomes ..**100 meters**.

Same handset area (more handset elements)→ same link budget Easier to obtain license for 140±2.5GHz than 75±2.5GHz

140GHz moderate-MIMO hub

If demo uses 32-element array (four 1×8 modules): 16 users/array. $P_{1dB}=21 \text{ dB}_{m} \text{ PAs}$, F=8dB LNAs 1,10 Gb/s/beam \rightarrow 16, 160 Gb/s total capacity

Handset: 8 × 8 array (9×9mm)

40, 70 m range in 50mm/hr rain with **17**dB total margins

Range varies as (# hub elements)^{0.5} \rightarrow (Service area/element) is constant

140GHz Architecture (Sketch)

75GHz RF front-ends BWRC

140 GHz hub RF front-ends UCSB

140GHz handset RF front-ends UCSD

Beamforming by:

FPGA: demos, algorithms

BWRC Hydra: flexible, general

hub

Custom Si VLSI beamformer ICs in development (BWRC, Cornell)

handset

210 GHz, 640 Gb/s MIMO Backhaul

8-element MIMO array

3.1 m baseline.
80Gb/s/subarray → 640Gb/s total
4 × 4 sub-arrays → 8 degree beamsteering

Key link parameters

500 meters range in 50 mm/hr rain; 23 dB/km 20 dB total margins: packaging loss, obstruction, operating, design, aging PAs: 18dBm =P_{1dB} (per element) LNAs: 6dB noise figure

210 GHz, 5.1 Tb/s MIMO backhaul

500m range in 50mm/hr. rain.

8-element 640Gb/s linear array: requires 14dB_m transmit power/element (P_{out})3.2W total output power requires 2.1m linear array

64-element 5Tb/s square array: same link assumptions requires 5dB_m transmit power/element (P_{out})3.2W total output power requires 2.1m square array

Complex system: can we make it cheaply ?

70 GHz, 640 Gb/s MIMO backhaul (16QAM)

Why not use a lower-frequency carrier, e.g. 70 GHz ?

8-element 640Gb/s linear array: requires 11dB_m transmit power/element (P_{out})1.7W total output power requires 5.5m linear array

64-element 5Tb/s square array: same link assumptions requires 2dB_m transmit power/element (P_{out})1.7W total output power requires 5.5m square array

Similar RF power output, physically larger

Transistors

100-1000 GHz Transistors and ICs

	f _{max} GHz	Good ICs to (GHz)	complexity	LNAs	PAS	increased bandwidth ?
CMOS	350	150/200	transceivers	good	weak: 10-30 mW	not easy
Production SiGe	300	200/250	transceivers	ok	OK: 20-100 mW	depends on \$\$
R&D SiGe	700	300/500	transceivers	good	OK: 20-100 mW	2-3THz
R&D InP HBT	1150	400/650	PA, converters	ok*	good: 100-200 mW	2-3THz
R&D InP HEMT	1500	500/1000	LNA	great	weak: 20-50 mW	2-3THz
R&D GaN	400	120/140	PAs	good	excellent: 0.1-1W	600GHz

ICs with useful performance, hero experiments

*can be addressed

There are THz transistors today; their bandwidth will increase

Challenge: reducing costs, increasing market size

mm-Wave CMOS won't scale much further

Shorter gates give no less capacitance dominated by ends; ~1fF/ μ m total

Maximum g_m , minimum $C \rightarrow$ upper limit on f_{τ} . about 350-400 GHz.

Tungsten via resistances reduce the gain

Inac et al, CSICS 2011

Present finFETs have yet <u>larger</u> end capacitances

mm-Wave Transistor Development

InGaN and GaN HEMTs:

High power from 100-340GHz GaN: superior power density at all frequencies UCSB/Mishra: InGaN for increased mobility Cornell/Xing: AIN/GaN/AIN

N-polar GaN: Mishra, UCSB

THz InP HBTs:

State-of-art: 1.1THz f_{max} @ 130nm node Efficient 100-650GHz power more f_{max} : more efficient, higher frequencies base regrowth: better contacts \rightarrow higher f_{max} . status: working DC devices; moving to THz

THz InP HEMTs:

State-of-art: 1.5THz f_{max} @ 32nm node Sensitive 100-650GHz low-noise amplifiers more f_{τ} : lower noise, higher frequencies high-K gate dielectric \rightarrow higher f_{τ} , f_{max}

ICs

JUMP ComSenTer Research: ICs

4 mm

ComSenTer 140GHz CMOS ICs for hub & handset

<u>1st-generation hub ICs: UCSB</u> Handset array ICs: UCSD

Farid et al, RFIC 2019

Rebeiz group

2nd-generation hub ICs: UC Berkeley

ComSenTer 140GHz InP ICs for hub

110mW power amplifier, 20.8% PAE

A. Ahmed, IMS 2020

190mW power amplifier, 16.7% PAE

A. Ahmed, EuMIC 2020.

Also: **"A 130-GHz Power Amplifier in a 250-nm InP Process with 32% PAE"** Kang Ning (Buckwalter group) 2020 RFIC symposium

210 GHz MIMO backhaul: ICs

M. Seo Sungkyunkwan/UCSB A. Ahmed, U. Solyu, M. Rodwell UCSB

Packages / array modules

The mm-wave module design problem

How to make the IC electronics fit ? How to avoid catastrophic signal losses ? How to remove the heat ?

Not all systems steer in two planes... ...some steer in only one.

Not all systems steer over 180 degrees... ...some steer a smaller angular range

140GHz hub: packaging challenges

IC-package interconnects Difficult at > 100 GHz

Removing heat Thermal vias are marginal

Interconnect density Dense wiring for DC, LO, IF, control. Hard to fit these all in.

Economies of scale

Advanced packaging standards require sophisticated tools High-volume orders only Hard for small-volume orders (research, universities) Packaging industry is moving offshore

100-300GHz IC-package connections

140GHz massive MIMO hub modules

140GHz hub: ICs & Antennas

110mW InP Power Amplifier LTCC Array module 20.8% PAE

190mW InP Power Amplifier 16.7% PAE

Teledyne InP HBT

CMOS Transmitter IC 22nm SOI CMOS.

GlobalFoundries 22nm SOI CMOS

1 cm

28

140GHz Single-Channel CMOS+InP Transmitter

A. Farid, A. S. Ahmed, UCSB, modules being tested

Concept: module for small angular scanning

Terrestrial system: horizontal + vertical steering \rightarrow rectangular array. Limited angular steering range (installation) \rightarrow spacing >> $\lambda/2$ Endfire / edge-card geometry: room for III-V PAs, LNAs. Mounting directly on metal carrier \rightarrow heatsinking.

2D arrays

The mm-wave module design problem

How to make the IC electronics fit ? How to avoid catastrophic signal losses ? How to remove the heat ?

Not all systems steer in two planes... ...some steer in only one.

Not all systems steer over 180 degrees... ...some steer a smaller angular range

100-300GHz: 2D arrays

Single-beam array:

1 PA, one phase-shifter in $\sim 0.36\lambda^2$

f	100	150	200	250	300	GHz
λ	3	2	1.5	1.2	1	mm
λ/2	1.5	1	0.75	0.6	0.5	mm
0.6λ	1.8	1.2	0.9	0.72	0.6	mm

100-300GHz, 2D arrays: ICs can fit

TX I/Q mixer 200GHz array cell LO frequency multiplier Phase shifter RX mixer (I or Q) 200GHz 40mW PA 0.9 mm x 0.9 mm 0.58 mm x 0.4 mm 0.3 mm x 0.4 mm 0.16mm x 0.08 mm 0.16 mm x 0.11 mm 0.56 mm x 0.78 mm (layouts are roughly in proportion; may not be in exact scale) 0.6λ x 0.6λ

200GHz 2D arrays:

~feasible with present IC blocks.

300GHz 2D arrays: layout compaction: better IC design smaller power amplifiers better wiring

34

LO buffer amp.

0.34 mm x 0.18 mm

How should we scale array design at high frequencies ?

 $P_{received} = \frac{A_t A_r}{2^2 \rho^2} e^{-\alpha R} \cdot P_{trans} \longrightarrow \# \text{beams} \cdot (\text{bit rate per beam}) \cdot kTF \cdot \text{SNR} = \frac{A_t A_r}{\lambda^2 R^2} e^{-\alpha R}$

 $\cdot \cdot P_{trans}$

(Worst-case atmospheric loss: ~constant over 50-300GHz)

Proposed scaling law	change
carrier frequency	increase 2:1
aperture area	keep constant
total transmit power	keep constant
100GHz	00GHz
THE TW	TW TW

Implication	change
capacity (# beams·bit rate per beam)	increases 4:1
number elements	increases 4:1
RF power per cm ² aperture area	stays constant
RF power per element	decreases 4:1
IC area/element (tiled array)	decreases 4:1
IC area/element (trayed array)	decreases 2:1
IC power/area (tiled array)	stays constant
IC power/area (trayed array)	decreases 2:1

Systems

Beamforming for massive spatial multiplexing

Pure digital beamforming:

dynamic range & phase noise requirements: appear to be manageable $\checkmark \checkmark \checkmark$ Digital back-end processing requirements (die area, DC power): being investigated ?

Analog, hybrid beamforming:

Do not appear to significantly improve dynamic range in massive MIMO.

Progress in System Design

Digital beamforming:

- ADCs/DACs: only 3-4 bit ADC/DACs required (Madhow, Studer)
- **Linearity**: Amplifier P_{1dB} need be only 3dB above average power (Madhow).
- Phase noise: Requirements same as for SISO (Alon, Madhow, Niknejad, Rodwell)
- Efficient digital beamforming: beamspace algorithm (spatial FFT, sparsity) (Madhow, Studer)
- Efficient digital beamforming: low-resolution matrix (Studer, Molnar)
- Efficient channel estimation : fast beamspace algorithm (Studer)
- Efficiently addressing true-time-delay problem: "rainbow" FFT algorithm (Madhow, Cabric)
- **Other issues:**
 - Propagation models and measurements
 - Blockage probability, mesh networks, network protocols

ADC resolution:

N ADC bits, M antennas, K signals: $SNR=6N+1.76+10 \cdot \log_{10}(M/K)$ 3 bits, $(M/K)=2 \rightarrow$ SNR=23 dB. QPSK needs 9.8 dB.

Jammer tolerance:

Increase ADC resolution by 1 bit $\rightarrow P_{jammer,max} = K \cdot P_{signal}$ Maximum jammer power = sum of all user's power.

Phase noise:

Phase noise: Phase error σ_{ϕ} : SNR= -20·log₁₀(σ_{ϕ})+10·log₁₀(*M/K*), where $\sigma_{\phi}^2 = \int_{f_{low}}^{f_{symbol}/2} L(f) df$. MIMO and SISO require similar L(f).

Beamspace:

lower frequencies, many NLOS paths, complicated channel matrix: $O(M^3)$ to beamform higher frequencies, few NLOS paths, simpler channel matrix: FFT, O(M·logM) to beamform fewer bits in signal; fewer bits in FFT coefficients.

Array-beamformer interconnects

100-300GHz Wireless

Wireless above 100 GHz

Massive capacities

large available bandwidths <u>massive</u> <u>spatial</u> <u>multiplexing</u> in base stations and point-point links

Very short range: few 100 meters

short wavelength, high atmospheric losses. Easily-blocked beams.

IC Technology

All-CMOS for short ranges below 200 GHz. SiGe, GaN, or III-V LNAs and PAs for longer-range links. Just like cell phones today SiGe or III-V frequency extenders for 220GHz and beyond

The challenges

digital beamformer computational complexity packaging: fitting signal channels in very small areas mesh networking to accommodate beam blockage driving the technologies to low cost (backup files follow)

100-300 GHz: challenges & solutions

Towards faster HEMTs: InAs MOS-HEMTs

Goal: Higher f_{τ} **for lower noise, sensitive receivers** 1200 vs. 600GHz f_{τ} : 1.5dB better F_{min} @ 300GHz. Increased bandwidth by scaling.

Scaling limit: gate insulator thickness InAlAs barrier with high-K dielectric

Scaling limit: source access resistance by regrowth, place N+ layer <u>on</u> InAs channel

Also:

thinner channel, higher barriers, larger electron sup

Frequency (GHz)

Present devices: 420GHz f_{τ} , 560GHz f_{max} @ ~20nm L_g Bandwidth limited by gate misalignment Next step: self-aligned process

Base Regrowth for THz HBTs

100-300GHz tile array

How to make everything fit ? radiated signal: up intense thermal flux: down DC/control/LO/IF lines: laterally

Need dense I/O <u>and</u> heat removal directly under IC

- → Crystalline SiC or AlN carrier (\$\$\$)
- → Ceramic SiC or AlN carrier (\$\$)
- \rightarrow LTCC with diamond/silver-filled thermal vias (\$)

If RF power density is independent of wavelength, then so will be the temperature rise across the package

InP ICs for 210GHz Point-Point MIMO

Transceivers & Arrays for 210GHz MIMO links

2/2020 tapeout:

210 GHz TX front-end w/ +20 dBm Psat 210 GHz TX front-end w/ +2 dBm Psat 210 GHz RX front-end 280GHz PAs and LNAs

5/2020 tapeout:

Improved 210, 280GHz LNAs and PAs 210 GHz transmitters, receivers using these 2x2 transmitter array with superstrate antenna 2x2 receiver array with superstrate antenna

Planned packaging approaches

InP IC bonding to patch antenna arrays on quartz. plan: ribbon bonds using wedge bonder

2x2 array with UCSD SiO₂ antenna superstrate simple, expensive in die area limits array size to 2x2 (or 2x4).

Seo, UCSB & Sungkyunkwan Univ.; Ahmed, Solyu, Rodwell, UCSB; Li, Zhang, Rebeiz, UCSD 48