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Abstract—Line of sight (LoS) multi-input multi-output
(MIMO) systems provide attractive scaling properties for emerg-
ing millimeter wave (mmWave) systems, with the number of
spatial degrees of freedom and available bandwidth both scaling
up with carrier frequency. A standard architecture for LoS
MIMO is an array of subarrays, where the number of subarrays
equals the number of available spatial degrees of freedom.
While this has the advantage of permitting each subarray to
employ radio frequency (RF) beamforming, recent developments
in mmWave radio frequency integrated circuits (RFICs) motivate
consideration of more flexible configurations employing a larger
number of receive antennas, with each element having its own
RF chain and digital output. In this paper, we investigate how
spatial oversampling with such configurations can help relax
precision requirements for analog-to-digital converters (ADCs),
which is a significant challenge as signaling bandwidths scale
up. We illustrate our ideas via LoS MIMO systems with 4
spatially multiplexed QPSK and 16QAM modulated data streams
and 2/3/4-bit ADCs, showing that 16 receive antenna elements
spaced evenly across the aperture outperform standard array
of subarrays architectures with the same number of antenna
elements.

I. INTRODUCTION

Line of sight (LoS) multi-input multi-output (MIMO) sys-
tems in emerging mmWave bands have attractive scaling
properties as the carrier frequency increases: for a fixed form
factor and link range, the available spatial degrees of freedom
increase linearly and quadratically for 1D and 2D arrays,
respectively, and the available signaling bandwidth typically
increases linearly, with carrier frequency. For example, 4-
fold spatial multiplexing in a 140 GHz system with 20 GHz
signaling bandwidth, QPSK signaling, and 100 meters range
achieves a data rate of 160 Gbps (approaching that of optical
links) while requiring transmit and receive apertures of size
0.69 meters for a 1D array, and 0.11 square meters for a
2D array. A standard architecture for such systems is an
array of subarrays [1], with the number of subarrays equal
to the number of spatial degrees of freedom. The advantage
of such an architecture is that each transmit or receive subarray
can perform RF beamforming, which requires a single RF
chain per subarray. In order to provide flexibility in base-
band processing for spatial demultiplexing, we would like
to employ digital processing at the subarray outputs. This
requires analog-to-digital converters (ADCs) for each subarray
output. A fundamental bottleneck to scaling then becomes the
relatively low ADC precision available as signaling bandwidth
increases.

With the emergence of radio frequency integrated circuits
(RFICs) at 100+ GHz supporting all-digital MIMO, with one
RF chain for each antenna [2], [3], it becomes possible to
explore more flexible antenna configurations. In this paper,
we provide detailed results indicating that spacing out receive
antennas across the aperture has the potential for alleviating
the performance bottleneck imposed by low ADC precision.
We consider an LoS MIMO system with four spatially mul-
tiplexed QPSK (16QAM) streams, with 16 antennas and 2-
bit (4-bit) ADCs available at the receiver, and compare three
configurations:
(a) a benchmark 4 × 4 array of subarrays architecture with
4 receive subarrays, each with 4 elements. We assume RF
beamforming at each subarray to eliminate quantization loss,
and apply the ADCs to each subarray output. In this case, we
have 4 digital outputs.
(b) a 4 × 8 system in which 8 receive subarrays are evenly
spaced across the aperture, each subarray containing 2 ele-
ments employing RF beamforming. This results in 8 digital
outputs.
(c) a 4× 16 system with 16 digital outputs from 16 elements
evenly spaced across the aperture.
We do not employ transmit precoding. Note that the received
SNR per data stream prior to ADC is the same across the
configurations. We show that, under the drastically reduced
precision considered here, spatial oversampling in the 4× 16
system yields substantially better performance than the clas-
sical 4× 4 array of subarrays architecture.
Related work: The degrees of freedom available in LoS
MIMO systems have been well-studied in the literature [1],
[4]. The standard architecture for attaining these degrees
of freedom is an array of subarrays, where the number of
subarrays equals the number of spatially multiplexed streams.
The outputs from the subarrays are then spatially demulti-
plexed. Recent efforts in the research literature have focused
on analog-centric [5], [6] or hybrid analog-digital [7], [8]
processing for spatial demultiplexing in array of subarrays
architectures. mmWave LoS MIMO links deployed in the field
by industry (e.g., [9]) also employ an array of subarrays, where
the “subarrays” tend to be fixed, highly directive antennas.
Recent study in [10] shows that all-digital processing in LoS
MIMO receivers with severely quantized samples is possible
for an array of subarrays architectures, introducing the concept
of virtual quantization which trades increased complexity in
digital processing for reducing ADC hardware complexity.
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Fig. 1. Spatially oversampled LoS MIMO communication system model

However, this approach still incurs an error floor for severely
quantized observations.

Like [10], we also consider all-digital LoS MIMO with low
ADC precision. However, we seek to reduce signal processing
complexity and improve performance by departing from the
standard array of subarrays architecture considered in the
preceding papers. Our approach is based on the recognition
that, as it becomes more feasible to increase the number of
RF chains in an all-digital architecture, there is an opportunity
to spread out the antennas without increasing the RF hardware
complexity. This provides a number of received digital streams
that exceeds the number of spatially multiplexed streams, and
we show that such spatial oversampling helps mitigate the
impact of drastic quantization. We note that relatively large
apertures and antenna spacings are required to create spatial
degrees of freedom in an LoS setting, hence it is possible
to add antennas to the aperture without increasing the form
factor.

Spatial oversampling has been employed previously to mit-
igate the frequency selectivity caused by geometric misalign-
ments in LoS MIMO [11], but quantization constraints were
not considered there. To the best of our knowledge, the present
paper is the first to explore the potential for alleviating the
ADC bottleneck using spatial oversampling.

II. SYSTEM MODEL

Consider a NT × NR LoS MIMO communication scheme
in which a NT -antenna transmitter with inter-antenna spacing
of dT and a receiver having NR units with inter-unit spacing
of dR, both having the same aperture (i.e., (NT − 1)dT =
(NR − 1)dR), are aligned with horizontal distance of R as
represented in Fig. 1. Assuming each transmit/receive antenna
produces a highly directive beam along the LoS, multipath is
ignored. We consider the same aperture (i.e., form factor) for
both the transmitter and the receiver. For given NT , we set
the inter-antenna spacing of the transmit antennas to

dT =

√
λR

NT
(1)

We allow NR to vary, and set

dR =
dT (NT − 1)

NR − 1
. (2)

Based on the given model in Fig. 1, the received signal
vector Y , [Y1 · · · YNR

]
ᵀ ∈ CNR×1 is given by

Y = HX + N , (3)

where X , [X1 · · · XNT
]
ᵀ ∈ CNT×1 is the transmitted

symbol vector, H ∈ CNR×NT is the normalized channel
matrix, and N ∼ CN (0, σ2 INR

) is AWGN.
Given R � (NT − 1)dT = (NR − 1)dR, the path loss

differences among the transmit-receive pairs can be ignored
and the channel between transmit element n and receive unit
m is given by

H(m,n) =
√
NA e

−jΦ e−jθm,n , (4)

where NA denotes the number of antenna elements at each
receive unit (i.e., subarray), the random variable Φ denotes the
common phase change along the path between the transmitter
and the receiver and is assumed to be uniformly distributed
over [0, 2π), and

θm,n ≈
π((n− 1)dT − (m− 1)dR)2

λR
, (5)

for R � (NT − 1)dT = (NR − 1)dR with λ denoting the
carrier wavelength.
Input: We consider QPSK and 16QAM modulations. For
all modulations, {Xi}NT

i=1 are independent and identically
distributed symbols taking values from the corresponding sig-
naling constellation with equal probability. In our simulations,
we define the average SNR per receive element/antenna as
SNR = E{|Xk|2}/(σ2) = 1/(σ2) where E{|Xk|2} = 1
for all k ∈ {1, . . . , NT }, which is considered as SISO SNR.
We note that the SNR per receive unit does scale with the
number of elements per unit (i.e., NA), which corresponds
to the analog beamforming gain (NA-fold increase) at each
receive unit (i.e., subarray).
Quantizer: We consider identical regular I/Q quantizers at
each subarray, or receive unit. Mathematically, the quantized
output of the ith receive unit can be expressed as

Ȳi = Q(Yi) , (6)

for i ∈ {1, . . . , NR}, where Q(·) represents the quantizer
function at each receive unit.

We consider b-bit I/Q quantization scheme with S2 regions
(i.e., S = 2b), for which the quantization set of (j+S(i−1))th-
bin can be written as

Γj+S(i−1) = {Y | Ii−1 ≤ <(Y ) < Ii ,

Qj−1 ≤ =(Y ) < Qj} , (7)

for i, j ∈ {1, . . . , S}, where I1, . . . , IS−1 and Q1, . . . , QS−1

are the thresholds for in-phase and quadrature, respectively.
We set I0 = −∞, IS =∞, Q0 = −∞, and QS =∞. Then,
for a given input y, Q(y) can be characterized as

Q(y) = ỹj , if y ∈ Γj , (8)

for j ∈ {1, . . . , S2}, where ỹj for j ∈ {1, . . . , S2} corre-
sponds to the quantizer output and Γ1, . . ., ΓS2 denote the
decision regions for the quantizer.
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Fig. 2. Three configurations: (Left) 4×4 array of subarray architecture and our proposed (Middle) 4×8 and (Right) 4×16 systems with spatial oversampling

As in [12], for drastic quantization, we find it advantageous
to employ entropy-maximizing quantizer thresholds rather than
classical minimum mean squared error (MMSE) quantization.
Therefore, the entropy-maximizer thresholds based on a Gaus-
sian approximation of the unquantized outputs are calculated
as

Ii = Qi =

√
4NA + σ2

2
Φ

−1

(
i

S

)
(9)

for i ∈ {1, . . . , S − 1}, where Φ
−1 is the inverse distribution

function for the standard Gaussian distribution with a mean of
0 and a standard deviation of 1.
Spatial demultiplexer: Maximum likelihood detection based
on quantized observations is intractable, hence we employ
linear ZF detection for spatial demultiplexing, setting the
quantizer outputs to the centroids of the corresponding quan-
tizer regions. The linear ZF solution can be obtained by first
computing

X̃(YQ) = (H†H)
−1
H†YQ , (10)

where YQ ,
[
Ȳ1 · · · ȲNR

]ᵀ
and then projecting the elements

of X̃(YQ) onto the constellation symbols.

III. RESULTS AND DISCUSSION

We consider the following scenarios in our performance
evaluation: a transmitter with NT = 4 antennas communicates
with a receiver with NR ∈ {4, 8, 16} receive units, each having
NA = 16/NR receive antennas. Those three configurations are
presented in Fig. 2.

Although our focus is on demultiplexing with severely quan-
tized observations, we first consider the unquantized scenario
where ADCs at the receivers are assumed to have infinite
precision. For those configurations in Fig. 2, Fig. 3 plots BER
averaged over the common phase Φ versus SNR for QPSK
modulation as if there is no quantization performed at the
receivers. As expected, the benchmark 4×4 array of subarrays
architecture with 4 receive subarrays at Rayleigh spacing [1]
is optimal for the considered unquantized scenario since the

received responses for the 4 transmitted streams are orthogonal
and the unquantized SNRs across the three systems are equal.
Our proposed 4× 16 system with 16 elements evenly spaced
across the aperture requires 1 dB higher SNR compared to the
benchmark 4×4 system to achieve the same BER performance.

We now turn to the scenario of interest for us and factor
in the severe quantization at the receivers with low-precision
ADCs for which spatial oversampling provides advantage. For
2 bit I/Q quantization, Fig. 4 plots BER averaged over the
common phase Φ versus SNR for these configurations with
QPSK modulation. We see from the figure that under the
drastic 2 bit quantization that we consider, both the 4× 8 and
4 × 16 systems perform better than the 4 × 4 system which
exhibits an error floor that stays higher than 10−3 BER. Our
proposed 4 × 16 system with spatial oversampling achieves
10−4 BER at 10 dB SNR, which is quite sufficient to achieve
reliable communication with high-rate error correcting codes.
Note that we have assumed that the 4 × 4 system does not
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Fig. 4. QPSK with 2-bit I/Q quantization (BER vs. SNR)

suffer quantization loss for beamforming by each subarray.
For truly all-digital LoS MIMO, in which RF beamforming
without quantization loss is not possible for a standard array
of subarrays configuration, the performance loss relative to
spatial oversampling is expected to be even larger.

Next, we investigate how the considered configurations
perform when we increase the precision of quantization 1 bit.
For that reason, we plot BER averaged over the common phase
Φ versus SNR in Fig. 5 for 3 bit I/Q quantization with QPSK.
Fig. 5 shows that all three configurations achieve similar BER
performance under 3 bit I/Q quantization. Also, given the
lower dynamic range of QPSK, none of the configurations
exhibits error floor at high SNR. However, it is important to
emphasize that the linear increase in the number of quantiza-
tion bits causes an exponential increase in the complexity of
ADC design. Also, this conflicts with our aim in this study
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which is to reduce precision requirements for ADCs.
We now consider the higher order modulation and evaluate

the performance of our configurations for 16QAM. Given
the higher dynamic range of 16QAM, it is obvious that 2-
bit I/Q quantization is not sufficient for the system with
16QAM to achieve adequate BER performance. Therefore, we
consider 3 bit and 4 bit I/Q quantization for 16QAM. For
three configurations with 16QAM, Fig. 6 and Fig. 7 plot BER
averaged over the common phase Φ versus SNR for 3 bit
and 4 bit I/Q quantization, respectively. In Fig. 6, we see that
neither of these configurations can achieve 10−3 BER even
at high SNR when 3 bit I/Q quantization is employed at the
receivers. On the other hand, we observe from Fig. 7 that under
4 bit I/Q quantization, our proposed 4× 8 and 4× 16 systems
outperform the 4×4 array of subarrays architecture. The 4×4
array of subarrays architecture cannot achieve 10−3 BER at
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high SNR, whereas both of our 4 × 8 and 4 × 16 systems
achieve 10−3 BER at 10 dB SNR.

IV. CONCLUSION

Our study of spatial oversampling for LoS MIMO has
shown that precision requirements for ADCs can be reduced
by spacing out receive antennas across the aperture. We show
that our proposed 4 × 16 system with spatial oversampling
defeats the benchmark 4 × 4 array of subarrays architecture
when 2 bit I/Q quantization is considered for QPSK and 4
bit I/Q quantization is considered for 16QAM. An important
future research direction is to investigate how far we can push
the concept of spatial oversampling to reduce the precision
requirements for ADCs (e.g., down to 1 bit), developing
analytical guidelines for system design in the presence of
severe nonlinearities analogous to those recently developed for
multiuser MIMO systems [13]. As noted in the introduction,
for unquantized systems, spatial oversampling has also been
shown to be effective in combating channel dispersion due
to geometric misalignments [11]. These prior results, together
with the results discussed here, point to the promise of spatial
oversampling as a powerful tool for robustness against a
variety of impairments. Although we do not employ transmit
precoding in this study, joint transmit-receive optimization
to reduce transceiver complexity is an important direction to
examine.
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