Lg = 40nm Composite Channel MOS-HEMT Exhibiting f_{τ} = 420 GHz, f_{max} = 562 GHz

Brian Markman, Simone Tommaso Suran Brunelli, Matthew Guidry, Logan Whitaker, and Mark J.W.

Rodwell

ECE, University of California Santa Barbara, Santa Barbara, CA, 93106, USA

Email: brian.markman@keysight.com Phone: (215) 264-9890

Overview: An $L_g = 40$ nm, $t_{ch} = 7.0$ nm In_{0.53}Ga_{0.47}As / InAs MOS-HEMT exhibiting $f_t = 420$ GHz and $f_{max} = 562$ GHz at $V_{DS} = 100$ 0.70 V, $V_{GS} = 0.30$ V, and $I_{DS} = 0.793$ mA/µm is reported. A 0.83 nm / 1.71 nm Al_xO_yN_z / ZrO₂ high-k gate dielectric is used with a 3.0 / 4.0 nm In_{0.53}Ga_{0.47}As / InAs composite channel. At 40 nm L_g , high peak $g_{m,e} = 2.9$ mS/ μ m and record low $g_{ds,e} = 0.18$ mS/ μ m at $V_{DS} = 0.70$ V was achieved. Long gate length $SS_{min} = 69$ mV/dec is observed. Bandwidth of the present devices is limited by parasitic $C_{GS,p}$, $C_{GD,p}$.

Fabrication: Device fabrication closely follows [3]. The starting epitaxial structure was purchased from Intelligent Epitaxy. From substrate to air the grown layers are: 100 nm UID-In_{0.52}Al_{0.48}As buffer, 3 nm modulation doped Si:In_{0.52}Al_{0.48}As (1.2 x 10¹⁹ cm⁻³), 3 nm UID-In_{0.52}Al_{0.48}As spacer, 3 / 4 / 6 nm UID-In_{0.53}Ga_{0.47}As / strained UID-InAs / UID-In_{0.53}Ga_{0.47}As composite channel. After thinning the channel to 7 nm the link region was grown. From channel to air the grown layers are: 3.0 nm UID-InP spacer, 3.5 nm Si:InP (1.0 x 10¹⁹ cm⁻³) modulation doping, 10 nm UID-InP cap. Cross-sectional TEM images of the device are shown in Fig. 1; wet etching through the link region prior to re-growing the S/D yields isotropic undercutting, bringing the link surface closer to the plane of modulation doping, resulting in a local reduction of n_{OW} , resulting in large end resistances R_{end} and no improvement to R_A compared to [3]. Recessing into the link reduces the barrier height and tunneling distance beneath the S/D while maintaining topology. Finally, 30 cycles of ZrO_2 was used giving 0.83 nm $Al_xO_yN_z$ / 1.71 nm ZrO_2 .

DC results: DC characteristics were measured on large gate-footprint devices ($L_{GM} = 1.2 \ \mu m$). Measurements were made from $V_{DS} = 0.1$ V to 1.0 V. Fig. 2 shows the transfer and output characteristics of a $L_g = 40$ nm, $(0\bar{1}1)$ device. Peak $g_m = 2.4$ mS/ μ m, $I_{on} > 1.4 \text{ mA}/\mu\text{m}$. $I_{off} = 6 \text{ nA}/\mu\text{m}$ and 2 μ A/ μm while minimum subthreshold slope SS_{min} is 122 mV dec and 252 mV/dec for $V_{DS} = 1.4 \text{ mA}/\mu\text{m}$. 0.1 V and 0.5 V respectively. Long gate length (1 μ m) SS_{min} = 69 mV/dec at V_{DS} = 0.1 V and I_G < 4 nA/ μ m² at V_{DS} = 0.5 V for all devices. Two sets of TLMs are used to measure R_S . One measures the N+ film resistance R_N and ohmic contact resistance R_C while the other measures R_L and R_A . The measured values are $R_C = 6.5 \ \Omega \cdot \mu m$, $R_N = 7.5 \ \Omega \cdot \mu m$, $R_A = 49.4-54.5 \ \Omega \cdot \mu m$ (orientation dependent), $R_L = 11.4 \ \Omega \cdot \mu m$, for total $R_S = 75-80 \ \Omega \cdot \mu m$. Extrapolating R_{on} to zero- L_g for $V_{GS} = 0.4-0.7 \ V$ gives $R_{on}(0) = 226-261$ Ω •µm. Lin *et al.* showed that extrapolated R_{on} in scaled III-V FETs contain a significant ballistic resistance $R_{ballistic}$ component, which can explain the discrepancy in $R_{S,TLM}$ and $R_{on}(0)$ [4].

RF results: S-parameters were measured from 250 MHz to 67 GHz using on-wafer probing and -27 dBm port power. Prior to measurement off-wafer load-reflect-reflect-match calibration was done. On-wafer open and short-circuit pad parasitics were deembedded where the order of pad extraction only minimally changes the transistors 2-port parameters. This paper quotes the more conservative extraction. Devices are two finger, $W_g = 10 \,\mu\text{m}$ for total gate periphery of 20 μm . f_{τ} , f_{max} are determined by fitting the -20 dB/dec roll off of current gain H₂₁ and unilateral power gain U from 10-50 GHz and 30-45 GHz respectively. Contour plots of f_t , f_{max} , H_{21} fit, and U fit for a $L_g = 40$ nm (011) device are shown in Fig. 3. The small signal equivalent circuit (SSEC) used to fit the measured S-parameters of a $L_g = 40$ nm (011) device is illustrated in Fig. 4 as well as measured and modeled U, H21, and maximum stable and available gain (MSG/MAG). Like [2] and [3], a series L-R network is used to describe the parasitic bipolar current gain observed at low frequencies due to breakdown at the drain-edge. The fitted L/R time constant (τ_p) is 33 ps, consistent with [2].

An Lg series of SSEC parameters, determined by automatic fitting based on [5], is shown in Fig. 5. Balanced ft, fmax at short Lg was realized by reducing $R_G \le 10 \Omega$ by overdeveloping the T-Gate foot at the expense of large C_{GS} and C_{GD} . $C_{GS} \ge 0.75$ fF/µm and $C_{GD} \ge 0.25$ fF/µm severely limit $f_{t_5} f_{max}$. High peak $g_{m,e} \ge 2.70$ mS/µm and extremely low $g_{ds,e} \le 0.20$ mS/µm are observed for most measured devices. Extracted $R_S = 95-110 \ \Omega \cdot \mu m$, corresponding to peak $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ and $g_{ds,i} = 0.27 \ mS/\mu m$ [6] or $g_{m,i} = 4.28 \ mS/\mu m$ [7] or $g_{m,i} = 4.28 \ mS/\mu m$ [8] or g_{m mS/ μ m and $g_{ds,i} = 0.26$ mS/ μ m, by SSEC modeling, for $L_g = 40$ nm at $V_{DS} = 0.7$ V, $V_{GS} = 0.3$ V. The extremely high g_m and low g_{ds} suggest that MOS-HEMTs can achieve f_{τ} , f_{max} in excess of 700 GHz, similar to [1] and [7] if $C_{GS,p}$ and $C_{GD,p}$ can be reduced. Most state-of-art HEMTs use self-aligned processes that limit $C_{GS,p}$ and $C_{GD,p}$ by eliminating gate overlap. Egard et al. demonstrated a self-aligned, regrown MOSFET process that can be adapted to the double regrowth MOS-HEMT process used here, providing a possible pathway forward [8].

Conclusions: Improved R_S was accomplished by thinning t_{Link} and increasing N_{δ} while g_m was increased by reducing t_{ins} and increasing t_{ch} . Balanced f_{τ} and f_{max} were realized by reducing R_G . Exceptionally high $g_{m,e} = 2.90 \text{ mS}/\mu\text{m}$ was demonstrated while simultaneously demonstrating extremely low $g_{ds,e} = 0.18$ mS/µm. C_{GS} and C_{GD} in excess of 0.75 fF/µm and 0.25 fF/µm limit highfrequency performance. A self-aligned process is needed to address parasitic capacitances and misalignment concerns. [1] H. B. Jo, et al., Appl. Phys. Express, 2019.

[3] B. Markman, et al., IEEE J. of Electron Devices Soc., 2020..

[5] S. Lee, et al., IEEE Microw. Guid. Wave Lett., 1997.

[7] X. Mei, et al., IEEE Electron Devic Lett., 2015.

[2] J. Wu, et al., IEEE Electron Devic Lett., 2018.

- [4] J. Lin, et al., IEEE Trans. Elec. Dev., 2016.
- [6] S. Y. Chou and D. A. Antoniadis, IEEE Trans. Elec. Dev., 1987.

[8] M. Egard et al., IEEE Electron Devic Lett., 2012.

Fig. 1. Cross-sectional TEM of (a) recessed source-drain device (b) intrinsic region of recessed source-drain device (c) intrinsic region of removed link device

Fig. 3. High frequency FOM contours and extrapolated FOMs at peak $f\tau$ bias

Fig. 4. (a) common-source SSEC of $L_g = 40$ nm (011) conduction device and (b) measured/modeled S-parameters

Fig. 5. Gate length series of extracted common-source SSEC elements where circles are (011) and squares are (011) conduction (a) $f\tau$, f_{max} determined by extrapolation (b) C_{GS} , C_{GD} (c) R_G (d) $g_{m,e}$, $g_{ds,e}$