

L_g = 40nm Composite Channel MOS-HEMT Exhibiting f_{τ} = 420 GHz, f_{max} = 562 GHz

Brian Markman, Simoné Tommaso Šuran Brunelli, Matt Guidry, Logan Whitaker, and Mark Rodwell

UCSB Department of Electrical and Computer Engineering

Funding: SRC & DARPA

- **1.** High f_{τ} , f_{max} HEMT Motivation
- 2. MOS-HEMT Advantage
- **3.** Device 1 Link Wet Etched
 - Fabrication
 - DC Characteristics
 - RF Characteristics
- 4. Device 2 Link "Recessed"
 - Fabrication
 - DC Characteristics
 - RF Characteristics

High f_{τ} , f_{max} HEMT Motivation

- Current electromagnetic bands are crowded
- Need to move into currently unallocated bands at higher frequencies
- Higher frequency = higher data rate = faster upload/download speeds
- For circuits to be efficient (high PAE) need $f_{op} \approx 0.1-0.2 \bullet f_{max}$
- Atmospheric attenuation means many base stations and spatial multiplexing

HEMT Motivation – Reduce Noise Figure

- 2:1 to 4:1 increase in f_{τ} :
 - Improved noise
 - Less required transmit power
 - Smaller PAs, less DC power
- Or higher-frequency systems

Noise Figure / Measure Considerations

- Noise of cascaded amplifiers is more important than noise of one
- F_{∞} can be big even if F_1 is small \rightarrow cannot forget G_1
- Cannot forget about $f_{max} \rightarrow$ Need balanced f_{τ} , f_{max}

Reduce Noise Figure – What Device?

<u>MOSFETs</u>

- Gate dielectric and L_g can't be much further scaled (CMOS and mm-wave)
- g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling
- Move source-drain further away \rightarrow HEMTs
- vertical S/D spacer
 low-K dielectric spacer
 high-K gate dielectric

vertical S/D spacer
low-K dielectric spacer
high-K gate dielectric

<u>MOSFETs</u>

- Gate dielectric and L_a can't be much further scaled (CMOS and mm-wave)
- g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling
- Move source-drain further away \rightarrow HEMTs

<u>HEMTs</u>

- Gate leakage current density \rightarrow small CBO of InAlAs to InGaAs
- R_s associated with getting electrons through widegap modulation doped link

high-K gate dielectric

Reduce Noise Figure – What Device?

MOSFETs

- Gate dielectric and L_a can't be much further scaled (CMOS and mm-wave)
- g_m/W_g (mS/ μ m) hard to increase $\rightarrow C_{end}/g_m$ prevents f_{τ} scaling
- Move source-drain further away \rightarrow HEMTs

<u>HEMTs</u>

- Gate leakage current density \rightarrow small CBO of InAlAs to InGaAs
- *R_s* associated with getting electrons through widegap modulation doped link

MOS-HEMTs

- Replace InAlAs gate dielectric with high-k
 - Reduces gate leakage, increases $C_{g-ch'}$, increases $g_{m'}$, increases f_{τ}
 - Better electrostatics, increases g_m / G_{DS} , increases f_{max}
- Regrowth process rather than recess etch process
 - Place N+ source-drain directly on channel, reduces R_{s} , increase g_m

Device 1 – Link Wet Etched

<u>Device 1 – Device Structure</u>

UNIVERSITY OF CALIFORNIA SANTA BARBARA ELECTRICAL AND COMPUTER ENGINEERING

t _{ch}	Channel Material	ZrO₂ Cycles
2.5 nm	InGaAs	30

Device 1 – DC Characteristics

<u>Device 1 – Peak Performance</u>

• Peak f_{τ} = 356 GHz and f_{max} = 403 GHz on the same device (L_q = 12 nm (011) conduction)

- Shift to larger V_{GS} due to thin channel and higher V_{DS}
- Why aren't g_m and f_t larger? Channel is thin, have high-k, both should be high!

Thin Channels are not the Whole Picture

- Thin channel gives large C_{QW} and C_{DOS}
 - C_{QW}: Wave-function moves towards oxide
 - *C*_{DOS}: in-plane effective mass increases

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}} \propto \sqrt{(C_{GS}[V_G - V_T])}$$

Thin Channels are not the Whole Picture

- Thin channel gives large C_{QW} and C_{DOS}
 - C_{QW}: Wave-function moves towards oxide
 - *C*_{DOS}: in-plane effective mass increases

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}} \propto \sqrt{(C_{GS} [V_G - V_T])}$$

Ultra-thin Body Quantum Wells

Maximum $(V_{qs} - V_{th}) \propto (E_F - E_1)$, depends on band offset of channel | back barrier •

- Thin Channel Take-Aways:
 - Larger $E_1 \propto \frac{1}{m^* t^2} \rightarrow$ less available $(E_F E_1)$, small m^* channels $\rightarrow E_1$ move faster
 - Channel needs to be thick enough for small E_1 = high $g_{m.i}$, I_{DS}
 - Channel needs to be thin enough for high $C_{as,i}$ and high aspect ratio (g_m / G_{DS}) •
 - Sweet spot ~6-10nm, unsurprisingly consistent with SOA MOSFETs and HEMTs 15 ۲

<u>Device 1 – Take Away</u>

- 1. Wet etching gives unpredictable link region profile
- 2. R_s moderately reduced but isotropic profile not worth reduction
 - Results in larger R_L due to resistive ends
- 3. Thin channels limit maximum g_m
- 4. Low $I_g \rightarrow$ room to thin high-k
- 5. Optimize channel thickness \rightarrow thicker <u>NOT</u> thinner

Device 2 - Fabrication

UNIVERSITY OF CALIFORNIA SANTA BARBARA ELECTRICAL AND COMPUTER ENGINEERING

<u>Device 2 – Device Structure</u>

UNIVERSITY OF CALIFORNIA SANTA BARBARA ELECTRICAL AND COMPUTER ENGINEERING

t _{ch}	Channel Material	ZrO ₂ Cycles
7.0 nm	InAs / InGaAs	30

Device 2 – DC Characteristics

• Peak f_{τ} = 420 GHz on L_q = 40 nm (011) conduction device, peak f_{max} at L_q = 50 nm

• Extrapolation of f_{max} difficult because of noisy U \rightarrow occasionally see "spiking"

<u>Deice 2 – Take Away</u>

- **1.** Link thinning gives excellent R_s and predictable profile
- 2. Peak g_m likely limited source-starvation \rightarrow need more n_{Link}
- **3.** Low $I_q \rightarrow$ room to thin high-k
- 4. Need to improve T-Gate process to reduce $C_{GS,p}$ and $C_{GD,p}$

<u>HEMT / MOS-HEMT State-of-the-Art</u>

ELECTRICAL AND COMPUTER ENGINEERING

22

Conclusions

- 1. Extremely high $g_m = 2.9 \text{ mS/}\mu\text{m} \rightarrow \text{competitive with SOA HEMTs}$
- 2. Extremely low $R_s < 100 \ \Omega \cdot \mu m \rightarrow$ will increase with InAlAs link
- Extremely low $g_{ds} = 0.2 \text{ mS/}\mu\text{m} \rightarrow \text{significantly better than SOA HEMTs}$ 3.
- Improving high frequency FOMs $\rightarrow f_{\tau}$, $f_{max} > 400$ GHz 4.
- 5. Need to improve T-Gate process to reduce parasitics!

MOS-HEMT Future Work

Problems:

- Peak f_{τ} severely limited by large $C_{GS,p} \rightarrow$ need a self-aligned process
- Peak f_{max} limited by large R_G (poor yield & reproducibility) \rightarrow improve T-Gate process
- Low breakdown voltage and therefore low power-handling \rightarrow wide E_q channel

Solutions:

- Self-Aligned "Regrowth Reversal" Process \rightarrow reduces $C_{GS,p}$ and improves T-Gate process
- Wide-bandgap back-barriers (AlAsSb) for improved G_{DS}
- InP channel / AlAsSb back-barrier MOS-HEMT for high-power

ELECTRICAL

Acknowledgements

AND COMPUTER ENGINEERING

Funding: DARPA ComSenTer

QUESTIONS

FET Scaling Laws (Now Broken)

Fermi Level moves to populate low DOS

FET parameter	change	
gate length	decrease 2:1	
current density (mA/mm)	increase 2:1	
specific transconductance (mS/mm)	increase 2:1	
transport mass	constant	
2DEG electron density	increase 2:1	
gate-channel capacitance density	increase 2:1	
dielectric equivalent thickness	decrease 2:1	
channel thickness	decrease 2:1	
channel state density	increase 2:1	
contact resistivities	decrease 4:1	

 10^{3}

Model vs. Extrapolation

Device	Extraction	<i>L_g</i> (nm)	<i>f</i> _τ (GHz)	f _{max} (GHz)	
0	Extrapolation	8	511	256	
0	Modeled	8	533	204	
1	Extrapolation	12	356	398	
1	Modeled	12	375	326	
2	Extrapolation	40	402	560	
2	Modeled	40	454	567	

[1] Device 0 - Fabrication

[1] Device 0 – Device Structure

t _{ch}	Channel Material	ZrO₂ Cycles
6.5 nm	InAs / InGaAs	40

[1] Device 0 – DC Characteristics

Peak g_m	R _A	Ion	I _{off}	I_g	Long $L_g SS_{min}$
2.2 mS/µm	68 – 85 Ω•µm	$> 0.90 \text{ mA/}\mu\text{m}$	$> 1.0 \ \mu A/\mu m$	< 10 pA/µm	N/A

[1] Device 0 – Peak Performance

Device 1 – RF Characteristics

High C_{GD}≈ 0.4 fF/µm

80

80

100

0.4

0.3

0.2

0.1

100

37

Extremely high $C_{GS} \approx 0.9$ fF/µm

60

Excellent *g*_{ds,e}≈ 0.2

m<mark>Ş/µm</mark>

Gate Length (nm)

High peak *g_{m,e}≈* 2.9 mS/µm

20

20

40

40

Gate Length (nm)

\$, √ 目 ♡ € Q ☆

Device 2 – RF Characteristics

HEMT / MOS-HEMT State-of-the-Art

Institution	Device	Year	g _m (mS/μm)	<i>f_t</i> (GHz)	f _{max} (GHz)	$V(f_t \bullet f_{max})$
Teledyne	HEMT	2011	2.75	688	800	742
Tokyo Tech	HEMT	2013	2.1	710	478	583
NGC	HEMT	2015	3.1	610	1500	957
NTT	HEMT	2019	2.8	703	820	759
Fraunhaufer	MOS-HEMT	2019	2.4	275	640	420
UCSB Gen. 0	MOS-HEMT	2018	1.5	357	410	383
UCSB Gen. 1	MOS-HEMT	2019	2.3	511	256	361
UCSB Gen. 2	MOS-HEMT	2019	1.6	356	403	379
UCSB Gen. 3	MOS-HEMT	2020	2.9	406	562	477

MOS-HEMT Future Work

- Peak f_{τ} severely limited by large $C_{GS,p} \rightarrow$ need a self-aligned process
- Peak f_{max} limited by large R_G (poor yield & reproducibility) \rightarrow improve T-Gate process

- Develop > 1 x 10^{19} cm⁻³ In_{0.52}Al_{0.48}As for link region top barrier
- Elegantly *hopefully* solved in one simple process

MOS-HEMT Future Work

UNIVERSITY OF CALIFORNIA SANTA BARBARA ELECTRICAL AND COMPUTER ENGINEERING

MOS-HEMT Future Work

Advantages

- Larger T-Gate aperture
- Improved RG
- Self-aligned Gate-Recess and T-Gate foot
- Self-aligned ohmics possible

Disadvantages

- Etching (dry & wet) in critical regions
- Topography on wafer before critical dimension definition
- Regrowth dynamics