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Abstract—A key goal of next generation networks is to scale
hardware design and signal processing algorithms to mmWave
and THz arrays with a large number of elements. Imperfect man-
ufacturing and limitations of circuit design introduce variations
in the gain and relative phase offset of transmit and receive array
elements that must be compensated prior to beam formation for
either communication or sensing. We propose a novel method
for calibrating large arrays in the field by exploiting the sparsity
of the spatial channel. While conventional calibration methods
are susceptible to multipath components in the wireless channel,
our approach is shown to be robust to multipath interference if
the measurements are gathered from a sufficiently diverse set of
locations.

Index Terms—Array calibration, digital beamforming, massive
MIMO, reciprocity, millimeter wave, THz

I. INTRODUCTION

As emerging technologies look to millimeter wave
(mmWave) and Terahertz (THz) frequencies for higher band-
width and spatial reuse, massive MIMO architectures play
a crucial role in realizing these gains. For sub-centimeter
carrier wavelengths, hundreds, even thousands, of elements
can be packed together on compact platforms, providing high
beamforming gain, interference suppression, and, in the case
of digitally controlled arrays, spatial multiplexing. In such a
massive MIMO regime, it becomes particularly important to
exploit regular array geometries and the spatial sparsity of
mmWave/THz channels for efficient signal processing [1], [2].
However, in order to apply such models, we must develop
techniques for calibrating amplitude and phase variations
across the elements of the array. Manufacturing can be more
challenging at small wavelengths, as small variations in RF
circuitry and local oscillator distribution paths can cause
large, unpredictable phase variations in the RF chain response
of different array elements. At THz frequencies, even sub-
millimeter path differences can produce large phase shifts,
causing completely random phase offsets across the transmitter
and receiver arrays. As a result, the spatial channels in uplink
and downlink are effectively multiplied by different random
vectors that must be estimated and compensated for in order
to take advantage of channel sparsity and reciprocity (Fig. 1).

This work was supported in part by ComSenTer, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

Fig. 1. Magnitude of spatial frequency domain representation of the channel
with (left) and without (right) calibration. The channel seen by a calibrated
array consists of a few spatial frequencies, corresponding to path directions,
which are identical in uplink and downlink. Calibration offsets disrupt both
frequency domain sparsity and path reciprocity of the channel.

Conventionally, array calibration is performed in a con-
trolled environment (e.g., anechoic chamber where a pure
single path channel is guaranteed) by exciting the array from
a source in its boresight. In these conditions, the channel
response is constant on the array antennas and the measured
signal is the calibration vector itself. This procedure is costly
and time consuming and its accuracy may be degraded by
slight changes in calibration offsets over time, e.g., due to
environmental effects or other sources of stress.
Contributions: We propose a framework for post-deployment
uplink and downlink calibration of a base station array in
an uncontrolled multipath environment, relying solely on the
spatial sparsity of the channel. We begin with the observation
that measurement of the array response from a single source
through a pure line-of-sight (LOS) channel can be used to
calibrate the array in a manner that suffices for beamforming.
While such calibration is inaccurate if the signal is received
through a multipath channel, we propose here a technique that
synthesizes an “effective LoS source” using measurements
from several sources (mobiles or nearby base stations) at
different locations for joint calibration and spatial channel
estimation. We exploit the location diversity across sources to
mitigate distortion due to multipath via an “align and average”
strategy, lining up the dominant paths of each source. We
term the dominant path for a given source as its LOS path
henceforth, since that is usually the scenario of interest, while
noting that our approach also applies in scenarios with LOS
blockage if there is a strong reflected path.
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Our approach to isolating and lining up LOS paths is
summarized as follows:
• Estimate pairwise spatial frequency differences between the
LOS paths for different sources via sparse super-resolution
techniques.
• Use these estimates to derotate and align measurements from
different sources.
• Use the strongest singular vector of the aligned measure-
ments as an “effective LOS measurement” for calibration.
• Optionally, reconstruct the multipath channel for each source
via sparse estimation, and refine the estimated calibration
vector from the original measurements conditioned on the
reconstructed channels.

We observe that even strong multipath can be filtered out
using measurements from as few as 10 sources using this
technique, provided the measurements have sufficiently high
SNR. We characterize the per-element SNR requirement, and
discuss consequences for two-directional calibration (i.e., of
both the transmit and receive arrays). In particular, we show
that the use of geometric reciprocity can help relax SNR
requirements for calibration in one direction by piggybacking
on calibration in the reverse direction.
Related work: Calibration of RF chains has long been of
interest, mainly for the goal of extending channel reciprocity
to end-to-end uplink-downlink reciprocity. One approach used
in the literature is to include dedicated hardware inside the RF
circuitry for calibration. For instance, in [3], extra elements
are added to the array that are not supported by a full
RF chain and act as pilot transmitters for calibration. A
more scalable and cost-efficient approach is to use external
sources, either in controlled environments with a known
channel response, as in [4], [5], or by jointly estimating
the channel and calibration offsets. Without relying on the
channel sparsity assumption, joint calibration and channel
estimation requires many measurements and a high level of
coordination between transmit and receive arrays [6]. In [7],
the authors assume single path channels between the source
and receiver and perform joint direction of arrival estimation
and broadband calibration. Second order statistics are used
in [8]–[10] to derive array offset parameters. These rely on a
set of sources with single-path channels transmitting unknown
but uncorrelated signals over time, utilizing the information
in the observed covariance matrix for estimation of array
gain and phase offsets, which are in turn used to estimate
the AOA of each source. These techniques rely on rotational
invariance of the source channels and therefore only apply to
single path channels that excite only one spatial frequency on
the array. In the presence of multipath, the performance of
these methods is severely degraded, as we show in section V.
With large enough bandwidth, multipath components can be
separated in time, and the direction and delay of each path
can be estimated jointly with array offsets. This approach is
used in [11] for joint calibration and delay estimation using
a wideband OFDM sequence. This method imposes a large
bandwidth requirement on the procedure, and is susceptible
to the existence of multipath components with close enough

𝜃 𝒈rx

𝜔1 = 𝜋 sin 𝜃
user 1

𝒈rx

𝜔′1 = 0user 1

Fig. 2. Rotation of angular reference perception toward direction of user 1
and alignment of LOS components of channels with that of channel 1

delays that can not be separated with the available bandwidth.
Some studies have formulated the problem of blind calibration
in the presence of multipath as a convex optimization problem.
In [12], [13] the authors propose a semi-definite programming
based convex optimization framework for joint estimation of
sparse channels and calibration coefficients. These methods
suffer from two major drawbacks. First, the assumption of
on-grid sparsity for the channel model which is not accurate
for a multipath channel with path directions dispersed on
a continuum, and second, the computational complexity of
these method for an array of length N is O(N3) making
it a poor match for massive MIMO arrays. In [14], a more
efficient method is proposed for this task. However, it requires
physical rotation of the target array to gather the necessary
measurements, which may not be feasible post-deployment if
antennas are mounted on a fixed platform. Here, we propose a
scalable blind calibration algorithm that is robust to multipath,
and therefore suitable for continuous in-the-field calibration.

II. SYSTEM MODEL

The base station consists of separate, digitally-controlled
transmit and receive arrays with Ntx and Nrx elements, re-
spectively. For simplicity, we consider linear arrays with half-
wavelength spacing, setting Ntx = Nrx = N . The nominal
response vector for a unit-amplitude plane wave incident from
angle θ is given by

r(ω) =
[
1, ejω, ej2ω, . . . , ej(Nrx−1)ω

]T
. (1)

where ω = π sin θ is the spatial frequency corresponding to
angle of arrival θ. Assuming that the transmit and receive
arrays have identical orientation, a single-path channel excites
the same spatial frequency in uplink and downlink, but with
a constant phase shift due to the relative displacement of
the arrays. This phase shift varies depending on the angle of
incidence, meaning conventional channel reciprocity does not
hold for multipath channels. However, geometric reciprocity
still guarantees that the angles of departure and arrival are
the same for each path in the channel. Thus, despite the
absence of full channel reciprocity for displaced arrays, such
path reciprocity can still be relied upon when beamforming
toward the dominant path in the channel, provided the arrays
are calibrated.

We denote the uplink (receiver) and downlink (transmitter)
calibration vectors by grx and gtx, respectively. Our goal is
to estimate these coefficients, up to a constant phase and
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spatial frequency offset, via a simple training procedure. We
first focus on receiver calibration, and later discuss how the
framework can be applied to transmitter calibration.

The phase and amplitude of received signals are altered by
the (multiplicative) receiver calibration vector,

grx[n] = αne
jφn , (2)

where αn ∈ R+, φn ∈ [0, 2π) and v[n] represents the
scalar value of the n’th element of vector v. Thus, a unit-
amplitude single-path channel with angle of arrival θ (or
spatial frequency ω) would result in the (noiseless) received
signal vector

y(ω) = diag(grx)r(ω), (3)

with y[n] = grx[n]ejnω = αne
j(nω+φn), n = 0, ..., Nrx − 1. If

a channel measurement is taken inside an anechoic chamber
using a source placed at θ = ω = 0, then a high SNR measure-
ment would yield an accurate estimate of the calibration vector
(up to a constant amplitude scaling and phase shift), since the
channel is guaranteed to contain only the direct LOS path with
a constant response across the array.
Calibrating with an LOS source from an unknown di-
rection: If, on the other hand, the source is at an unknown
direction θ1 (spatial frequency ω1), then the measurement is at
a constant frequency offset away from the true calibration vec-
tor grx. Interestingly, the offset vector, g̃rx[n] = αne

jφn+nω1 ,
is still a valid calibration vector as we can simply operate
with a shifted spatial frequency reference by mapping any
path direction ω to the shifted version ω̃ = ω − ω1. This
simply translates the channel response in spatial frequency,
preserving sparsity. Furthermore, if both the transmitter and
receiver are calibrated at the same (albeit unknown) offset
direction, they share a common spatial frequency reference,
so that geometric reciprocity is also preserved. Therefore,
when pure LOS channel measurements are available to us, the
calibration offsets can be (directly) measured up to a constant
phase and spatial frequency offset, and channel sparsity and
geometric reciprocity is attained.
Multipath model: In multipath channels, however, direct
calibration is not possible. To recover the uplink calibration
vector, we rely on a set of M channel measurements from
users dispersed in the cell or other nearby base stations that
take turns transmitting a predefined training sequence from
different locations. Measurements are thereby separated in
time domain and cross-user interference is avoided. Denoting
the amplitude, direction, and spatial frequency of the LOS path
for source m by am, θm and ωm, respectively, the response
vector corresponding to that path is amdiag(grx)r(ωm), and
the full multipath channel measurement is of the form

ym = diag(grx)hm + νm

= amdiag(grx)r(ωm) ← (LOSm)

+ diag(grx)

Km∑
k=1

a′m,kr(ω
′
m,k) ← (MPm)

+ νm ← (noise) (4)

where Km is the number of multipath components in channel
m, a′m,k and ω′m,k are the complex amplitude and spatial
frequency of the kth multipath component of source m, and
νm ∼ CN (0, σ2I) is the receiver noise vector. We use the
notation MPm as a shorthand for the total contribution of non
line of sight (NLOS) multipath components, which is typically
smaller than the LOS contribution. We treat this term as noise
for our alignment of LOS paths across measurements for
initial calibration, and then use sparse estimation techniques
to estimate the multipath in order to refine our calibration.

Our measurement model (4) assumes narrowband signaling
during calibration. Larger signaling bandwidths could be used
to reject at least some of the multipath components, but we do
not rely on that here, in order to demonstrate the generality
of our approach.

III. ALGORITHM

In this section, we describe our algorithm for joint estima-
tion of calibration coefficients and channels using measure-
ments from M user locations. We first consider the uplink
direction (receiver calibration) and then discuss how the frame-
work is applied in the downlink for transmitter calibration.

Suppose that we take noise-free measurements from an LOS
source at spatial frequency ω1 as our calibration vector, as
indicated in the previous section. This yields the effective
calibration vector

g̃rx = y1 = a1diag(grx)r(ω1)

=
[
a1αne

j(φ1+nω1)
]
n=0:Nrx−1

. (5)

which is shifted in spatial frequency by ω1 while preserving
sparsity and geometric reciprocity (see Fig. 2). We can there-
fore define

α̃n = |y1[n]| = |a1|αn,
φ̃n = ∠y1[n] = φn + ∠a1 + nω1,

ω̃1 = 0, ã1 = 1.

in our shifted system.
Calibrating in multipath channels: In our proposed algo-
rithm, we take the LOS response of the first measurement
(ω1, α1) as our spatial frequency and phase reference. Using
(5), we rewrite the channel measurement as

y1 = g̃rx + M̃P1 + ν1

where all the multipath components in the channel are fre-
quency shifted according to the reference ω1. A second
measurement vector, y2, with LOS at (true) angle ω2 is of
the form

y2[n] = g̃rx[n]
a2
a1
ejnω̃2 + M̃P2 + ν2

where ω̃2 = ω2 − ω1. Indeed, any new measurement can be
transferred to the reference frame of g̃rx by translating its LOS
angle, ωm, to our perceived coordinate system as ω̃m = ωm−
ω1, and dividing its gain, am, by the gain of the first path
to get ãm = am/a1. The calibration procedure consists of
translating this concept into an algorithm.
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A. Estimating LOS frequencies in reference frame

For two noiseless LOS measurements, the frequency dif-
ference and gain ratio can be estimated from non-calibrated
measurements ym and y1 by forming the vector

zm[n] =
ym[n]

y1[n]
≈ am

a1
ejn(ωm−ω1) = ãme

jnω̃m (6)

and finding its peak in frequency domain. While (6) is a
suitable way to construct zm for noiseless and purely LOS
channels, in a realistic environment it is better to first undo
the amplitude scaling using a coarse absolute gain estimate,
e.g., α̂0[n] =

1
M

∑
m |ym[n]|, and then element-wise multiply

ym by the conjugate of y1 to produce

zm[n] =
ym[n]y∗1[n]

α̂2
0[n]

, (7)

a mixture of frequencies, the strongest of which is the element-
wise conjugate product of LOS components with frequency
ωm−ω1. This dominant frequency can be accurately estimated
using an off-grid sparse reconstruction algorithm such as
Newtonized orthogonal matching pursuit (NOMP) [15], from
the measurement model, ym = Azm, where A = IN ,
providing us with an estimate for ω̃m = ωm − ω1.

B. Aligning measurements

After estimating ω̃m = ωm − ω1 for all m, we align the
(uncalibrated) LOS of all measurements with that of y1 by
undoing this frequency offset as follows:

ỹm[n] = ym[n]e−jnω̃m

= amgrx[n]ejω1n + MPm[n]ejnω̃m + ν′m[n]

=
am
a1

g̃rx[n] + MP′m + ν′m[n]. (8)

A geometric interpretation of this procedure is illustrated in
Fig. 2. Note that these vectors are weighted copies of g̃rx

distorted by independent noise and multipath.

C. Averaging

In order to extract g̃rx, we form the Nrx ×M matrix,

G = [ỹ1 ỹ2 ... ỹM ] . (9)

We can now perform a singular value decomposition (SVD)
on G, and taking the strongest left singular vector

ĝrx = u1(G), (10)

to obtain an estimate for the calibration vector g̃rx, shifted
in spatial frequency by ω1. Since the multipath distortions in
different ỹ vectors are independent while the LOS components
are aligned, increasing the number of measurements M rapidly
improves the accuracy of ĝrx, as we demonstrate numerically
in Section V.

D. Refinement via sparse channel reconstruction
We can further refine our estimate of g̃rx by calibrating

the original measurements with the output of (10) and ob-
taining estimates of the significant paths in each channel,
{ãm, ω̃m, ãm,k, ω̃m,k}, via off-grid sparse estimation; we em-
ploy the Newtonized Orthogonal Matching Pursuit (NOMP
[15] for this purpose. We then construct the full channel at
each location as

h̃m = ãmr(ω̃m) +

Km∑
k=1

ãm,kr(ω̃m,k) (11)

and undo it in the original measurements to arrive at a new,
more accurate set of vectors,

ỹ′m[n] =
ym[n]

h̃m[n]
, m ∈ {1, ...,M}. (12)

We then form the refined matrix,

G′ = [ỹ′1 ... ỹ
′
M ] (13)

and perform SVD to arrive at a refined estimate of g̃rx,

ĝrx = u1(G
′). (14)

Our numerical results show that this step can significantly
reduce the calibration estimation error, provided the initial
calibration vector estimate is sufficiently accurate.
Transmitter calibration: Downlink calibration is analogous
to uplink, and the same procedure can be used to find g̃tx from
M measurements of the uncalibrated downlink channel. In
order to obtain these measurements, the base station broadcasts
orthogonal training sequences (e.g., baseband OFDM subcar-
riers) on its transmit array elements, and the users correlate
the observed signals against each sequence to recover Ntx-
dimensional measurement vectors, which are then fed back to
the base station. We note that, for effective calibration, it is
vital that both the transmitter and the receiver use the same
path of the same user as their reference direction, so that g̃tx

and g̃rx are consistent in their perceived orientation, and path
reciprocity is upheld.

IV. SCALING AND SNR REQUIREMENT

While increasing the number of measurement locations im-
proves estimation accuracy by averaging multipath and noise,
the SNR of each measurement is a significant bottleneck in the
success of the algorithm, specifically, the frequency difference
estimation step of III-A. To quantify this bottleneck, consider
two standard, unit-amplitude complex sinusoids, x1[n] =
ejnω1 and x2[n] = ejnω2 , of length N , distorted by complex
Gaussian noise, ν, of variance σ2. The per-entry SNR of each
of these signals is 1/σ2. The frequency difference is found
by multiplying the first vector by the conjugate of the second
vector to obtain

z[n] = (x1[n] + ν1[n])(x2[n] + ν2[n])
∗

= x1[n]x
∗
2[n] + (ν1[n]x

∗
2[n]

+ ν∗2[n]x1[n]) + ν1[n]ν
∗
2[n]

= ejn(ω1−ω2) + ν′[n] + ν′′[n] (15)
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where E[(ν′[n])2] = 2σ2 and E[(ν′′[n])2] = σ4. Thus the
per-entry SNR of vector z is 1/σ2

z = 1/(2σ2 + σ4). If
the input SNR is low (e.g., less than 0 dB), the σ4 term
becomes dominant and the SNR of our frequency difference
measurement diminishes drastically. The per-element SNR is
therefore a bottleneck that cannot be offset simply by increas-
ing the number of measurement sources M , because correct
estimation of the relative channels is crucial for aligning the
measurements. Hence, this low SNR regime should be avoided
and per-element SNR must be above a threshold for every
measurement source that we use.

In MIMO communication, the link budget is typically de-
signed for beamformed communication, ensuring beamformed
SNR is kept at an adequate, relatively constant level. Conse-
quently, the per-element SNR decreases by a factor of 1/N as
array size N grows large. Therefore, in a practical setting, each
calibration measurement must be aggregated over a number
of symbols proportional to array size to provide sufficient
per-element SNR for frequency difference estimation. The
measurement complexity of this scheme is therefore O(N).
Piggybacking: Due to geometric reciprocity, the LOS spatial
frequencies, {ω̃m = ωm − ω1}, estimated in the process of
calibrating one direction can be reused when calibrating the
opposite direction. Indeed, having precomputed estimates for
the LOS frequencies allows bypassing of the initial frequency
difference estimation step, which is the most SNR-sensitive
step. As shown in our results, this can reduce the SNR
requirement for the calibration procedure by a factor of N .
In principle, piggybacking can be done in either direction:
downlink calibration may use frequency estimates obtained
during uplink calibration or vice versa.
Computational complexity: The most computationally inten-
sive steps in the proposed algorithm are the sparse channel (or
dominant frequency) estimation step and the SVD calculation.
For the former, we use the NOMP algorithm which has
complexity O(N logN), while the complexity of SVD is
O(MN). The overall computational complexity of our scheme
is therefore O(N logN +MN). Since the algorithm requires
a relatively small number of measurement sources M , the
computational burden scales near linearly with array size. In
comparison, the benchmark approach of [12] has a complexity
of O(LN2) where L is the length of the observation sequence
used to estimate the covariance matrix of the channel response.

V. NUMERICAL RESULTS

In this section we evaluate the performance of our approach
via Monte Carlo simulations. Results are averaged over 100
realizations for each setting. We assume the LOS of all user
channels have the same magnitude and model the multipath as
one or more paths (specified for each case) with randomly cho-
sen spatial frequencies maintaining a minimum separation of
4π/N from that of the LOS. Calibration phases and amplitudes
are generated uniformly at random over (0, 2π) and (0.8, 1.2),
respectively. As a benchmark, we consider the algorithm
of [8] for sensor calibration which relies on second order
channel statistics derived from measurement of simultaneous
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Fig. 3. Performance as a function of aggregate per-element SNR and number
of measurement locations with different levels of multipath (strengths reported
relative to LOS); left: standalone estimate, right: piggybacked estimate.

yet independent source transmissions over a long interval. We
set the number of sources to 20 and assume the interval is long
enough (infinite) to measure the channel covariance exactly.
This algorithm assumes single-path channels from all sources
and its performance is degraded significantly with even small
multipath in the channels. We also report the performance of
the standard calibration procedure that assumes measurements
from a single source with no multipath (i.e., in an anechoic
chamber). We assume noiseless reception for both of these
benchmark procedures.

In Fig. 3 we report the mean squared error of calibration
estimates obtained using our approach as a function of per-
element SNR and number of measurement locations, M , for
a 100-element receiver with different levels of multipath. It
should be noted that these graphs are identical for uplink
and downlink calibration assuming the same measurement
sequence length and identical transmit power and receiver
sensitivity for the user device and base station antenna el-
ements. In this case, the orthogonal sequence transmission
and correlation can be abstracted as an identity transform,
and there is no meaningful difference between applying the
algorithm in uplink and downlink. The results reported in Fig.
3 demonstrate that, with high enough measurement SNR, the
algorithm is able to overcome significant multipath with even
a small number of measurement locations. We also clearly
see the per-element SNR bottleneck described in section IV;
at per-element SNR of below 5 dB - corresponding to 25 dB
beamformed SNR which is sufficiently high for beamformed
communication - the algorithm fails regardless of the number
of measurement locations. In the right-hand column graphs,
we have plotted the same heatmaps for the case where the
initial spatial frequency estimates are supplied from high SNR
readings in the opposite direction. In this case, the SNR
requirement is significantly lower which confirms our predic-
tion that this first step of estimating the relative LOS spatial
frequency offsets is the SNR bottleneck of the algorithm.

Fig. 4 depicts the (noiseless) performance of our algorithm,
with and without the refinement step and with different number
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Fig. 4. Performance of proposed algorithm and benchmarks as a function of
multipath strength (assuming one NLOS multipath component in the channel).

of measurement locations, against that of the benchmark
algorithms. This figure demonstrates clearly the strength of
our proposed approach in accurate calibration of arrays in
the presence of even the strongest levels of multipath. We
also observe that the refinement step can boost performance
significantly at high M , yet for M = 2 there is virtually no
gain from refinement. The reason behind this dynamic is that
when taking SVD of only 2 measurements, the multipath is
not rejected effectively and multipath frequencies seep into
our initial estimate, ĝ, and consequently cause parasitic fre-
quencies in the sparse reconstructed channel estimate. Without
an accurate channel estimate, the refinement step does not
improve calibration accuracy, and may even degrade it.

VI. CONCLUSIONS

We presented a technique for post-deployment calibration of
MIMO base station transceivers over noisy multipath channels.
By aggregating measurements from a diverse set of locations
in the cell, the algorithm is able to average out the independent
multipath components and emulate a pure LOS channel to
measure uplink and downlink calibration offsets. The calibra-
tion estimates can further be refined via sparse reconstruction
of the full multipath channels that are in turn used to recover
more accurate copies of the calibration vector from the raw
measurements.

Our simulations demonstrated the robustness of the pro-
posed approach against strong multipath components in the
channel, which makes it suitable for on-the-fly calibration in
realistic deployment environments. We found that the per-
formance of this algorithm is sensitive to noise power on
each antenna element, and therefore the training sequence
used for measuring the channel of each source must be long
enough to aggregate sufficient per-element SNR. For a typical
beamformed communication budget, this length scales linearly
with the number of elements in the array, as demonstrated
by our numerical results. We also showed, however, that the
path reciprocity available to spatially displaced transmitter and
receiver arrays can be leveraged to relax this SNR requirement
for one of the arrays by piggybacking on the high accuracy
channel estimates obtained in the other.

While we have developed our calibration framework for
channel models corresponding to ideal RF and mixed sig-
nal processing, in practice, nonlinearities in the signal path,
such as ADC quantization, amplifier saturation, and dynamic
range, must be accounted for. A detailed treatment of such

effects, alongside experimental verification of the proposed
framework, is left for future work.
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