GENERALIZED BLIND MISMATCH CORRECTION
FOR TWO-CHANNEL TIME-INTERLEAVED A-TO-D CONVERTERS

Munkyo Seo, Mark Rodwell, Upamanyu Madhow

Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106 USA

ABSTRACT

Calibration of sub-converter mismatches is a challenging task for high-performance time-interleaved analog-to-digital converters (TIADC). Presently known blind correction methods can remove static gain and sampling time mismatches. However, actual sub-converters exhibit significant deviation from a simple gain-timing model, and the resulting modeling error put a strict limit on the maximum output signal-to-noise ratio achievable. For a higher level of spectral purity, generalized mismatch modeling is necessary, breaking the limitation of gain-timing model. In this paper, we propose a blind method to correct generalized mismatch errors for a two-channel TIADC under wide-sense stationary input and small-mismatch assumption, which is the first to the authors’ knowledge. Cyclostationary spectral analysis shows that unique identification is possible in most practical cases. Simulation results show significant performance improvement by the proposed generalized blind method.

Index Terms— calibration, time-interleaved, adaptive signal processing.

1. INTRODUCTION

A time-interleaved analog-to-digital converter (TIADC) has a parallel structure where a number of sub-converters cyclically sample the input signal, and outputs are similarly taken to form a digital stream. The overall sampling rate linearly increases with the number of sub-converters, and therefore a TIADC is well suited for high-speed analog-to-digital (A/D) conversion systems [1].

It is well known that the spectral performance of a TIADC is seriously degraded by sub-converter mismatches. Such mismatches create noise sidebands by modulating the input, and eventually limit the output signal-to-noise ratio (SNR) or spur-free dynamic range (SFDR). Mismatches can be digitally corrected by either training [5] or blind methods [2]-[4], [6]-[7]. Training methods are suitable for high-resolution applications since they are capable of correcting general linear mismatches, but at the cost of system suspension during each calibration. Blind methods allow uninterrupted system operation and can track slowly time-varying errors, but currently known blind methods can only handle static gain and timing mismatches.

The calibration performance of this gain-timing correction depends on specific converter hardware and the input signal bandwidth. If the TIADC input circuitry and sub-converters have high enough bandwidth with no in-band poles or zeros, then the static gain and time delay may adequately model a sub-converter. If, however, the first input pole (or zero) is not sufficiently higher than the input bandwidth edge, the gain and phase response is no longer a straight line. As a result, mismatches in the location of pole (or zero) between channels will produce nonlinear gain and phase mismatch response. If the input circuitry has bandpass nature, the displacement of lower-frequency poles (or zeros) will also result complicated mismatch behavior [5]. This modeling error is irreducible and acts as residual mismatches, making gain-timing model inadequate for high-resolution applications. There is one interesting exception though: if the input signal bandwidth is narrow enough (e.g. a single-tone), gain-timing model can provide a point match to a real channel transfer function, as long as the blind algorithm has finished adaptation to the input signal [7]. This is however a very special case, and is by no means a typical scenario under blind calibration. Such a point match is immediately invalid when the input departs from a pure sinusoid.

It is clear at this point that generalized mismatch correction is necessary for a higher level of calibration performance, breaking the limitation of simple gain-timing model. Now, the challenge is how to handle the increased number of estimation parameters resulting from generalizing correctible mismatches. The blind search algorithm will more likely end up at local minima, resulting false correction. The pertinent goal is to find a combination of realistic constraints and mismatch parameterization such that the blind algorithm can uniquely identify a necessary number of mismatch parameters under most practical cases. Our blind method is based on wide-sense stationary (WSS) input assumption and polynomial mismatch approximation. We will show that this particular combination enables multi-parameter estimation and eliminates false correction in most practical cases.

2. SYSTEM CONFIGURATION

A two-channel TIADC system is shown in Fig.1 (a). The sample period and frequency of the array is T_s and $\omega_s=2\pi/T_s$, respectively. The analog input $x(t)$ is bandlimited from dc to $0.5\omega_s$, and assumed to be a real-valued, zero-mean and WSS random process. Fig.1 (b) illustrates a linear equivalent model with channel transfer function (CTF) $H_0(\omega)$ and $H_1(\omega)$. Any linear filtering effects before A/D conversion are lumped into the CTF, including static gain, sampling time shift, pole-zero effect, etc. Assuming the bit-resolution is high, quantization effects are ignored. Normalization with respect to the first channel yields Fig.1 (c), where the correction digital filters $F_0(\omega)$ and $F_1(\omega)$ are also shown. This
Each bank is then defined by digital filters, respectively. The alias component (AC) matrix for with analysis and synthesis filter bank equal to the analog and mismatches between the two channels.

Figure 1. \(M=2 \) TIADC system model: (a) physical system, (b) equivalent system and (c) normalized system with correction filter bank. \(y[n] \) is corrected and uncorrected output, respectively.

normalization clarifies we are interested only in channel mismatches, disregarding common linear time-invariant (LTI) filtering. There are two justifications for this: first, LTI system does not create distortion sidebands, and second, common filtering due to CTF is acceptable in most cases. Now, the normalized CTF \(H(\omega)=H_{A}(\omega)+H_{S}(\omega) \) fully characterizes the general linear mismatches between the two channels.

The system in Fig.1 (c) can be regarded as an \(M=2 \) filter bank, with analysis and synthesis filter bank equal to the analog and digital filters, respectively. The alias component (AC) matrix for each bank is then defined by [8]

\[
\mathbf{H}_{AC}(\omega_{A},\mathbf{p}) = \begin{pmatrix} H(\omega) & 1 \\ 1 - H(\omega - \omega_{0}/2) & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ e^{-j\omega_{0}} & 0 \end{pmatrix}.
\]

(1)

\[
\mathbf{F}_{AC}(e^{j\omega},\tilde{\mathbf{p}}) = \begin{pmatrix} F_{A}(\omega_{A}) & F_{S}(\omega_{A}) \\ F_{A}(\omega_{S}) & -F_{S}(\omega_{S}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ e^{-j\omega_{0}} & 0 \end{pmatrix}.
\]

Note that \(\mathbf{H}_{AC} \) and \(\mathbf{F}_{AC} \) is a function of \(\mathbf{p}_{0} \) and \(\tilde{\mathbf{p}} \) which is an actual and estimated mismatch parameter vector, respectively. The perfect reconstruction condition is [8]

\[
\mathbf{H}_{AC}^{\dagger} \mathbf{F}_{AC} = 2I.
\]

(2)

which means that the entire system in Fig.1 (c) reduces to an LTI system with no aliasing error. Equation (2) suggests that the correction filter should be designed as

\[
\mathbf{F}_{AC}(e^{j\omega},\tilde{\mathbf{p}}) = 2\mathbf{H}_{AC}^{\dagger}(\omega,\tilde{\mathbf{p}}).
\]

(3)

where \(\mathbf{H}_{AC} \) is the AC matrix of a hypothetical analysis filter bank (assumed to be invertible),

\[
\mathbf{H}_{AC}(\omega,\tilde{\mathbf{p}}) = \begin{pmatrix} 1 & \hat{H}(\omega) & 1 \\ 1 - \hat{H}(\omega - \omega_{0}/2) & 0 & e^{-j\omega_{0}} \end{pmatrix}.
\]

(4)

\(\hat{H}(\omega) \) is the estimated CTF parameterized by mismatch estimation \(\tilde{\mathbf{p}} \). The correction filters can be designed as follows: First, specify \(\tilde{H}(\omega) \) using the current estimation \(\tilde{\mathbf{p}} \); second, build \(\mathbf{H}_{AC} \) using (4); third, invert it to obtain \(\mathbf{F}_{AC} \) using (3); finally, obtain the time-domain impulse response using any conventional filter design method (e.g., frequency sampling, least-squares, etc).

\[
f_{A}[n] = \text{IFFT}\{F_{A}(e^{j\omega})\},
\]

\[
f_{S}[n] = \text{IFFT}\{F_{S}(e^{j\omega})\}.
\]

(5)

In (5), IFFT(·) is the inverse Fourier transform operator. \(f_{A}[n] \)’s and \(f_{S}[n] \)’s are correction filter taps, whose combined output is the mismatch-corrected TIADC output in Fig.1 (c).

3. CYCLOSTATIONARY CHARACTERIZATION

A TIADC is a periodically time-varying linear system. Given a WSS input, the output is wide-sense cyclostationary (WSCS). If there is no mismatch, the output is also WSS. The proposed blind method seeks to the following input-output WSS condition: assuming a WSS input, adjust the correction filter such that the TIADC output restores WSS property. For an \(M=2 \) TIADC with gain-timing model, the attainment of input-output WSS condition was shown to be necessary and sufficient for actual mismatch correction [6]. This pair-wise WSS condition also proves useful for generalized mismatch model. Therefore, characterization of WSCS and WSS processes is central to the present paper. We follow the convention in [9] throughout the paper.

The autocorrelation function of the TIADC output \(y[n] \) is given by \(R_{y}[\tau,n]=E[y[n]\cdot y[n+\tau]] \). A random process is called WSCS if its autocorrelation is periodic with respect to the common shift. Note that WSS processes are also WSCS, but not vice versa. The TIADC output autocorrelation \(R_{y} \) then satisfies (for \(M=2 \)),

\[
R_{y}[n,n'] = R_{y}[n+2,n'+2] \text{ for all } n.
\]

(6)

If channel mismatch is present, \(R_{y} \) is in general shift-dependent,

\[
R_{y}[n,n'] \neq R_{y}[n+1,n'+1] \text{ for all } n.
\]

(7)

If no mismatch, \(y[n] \) is WSS and \(R_{y} \) is always shift-independent.

\[
R_{y}[u,n'] = R_{y}[u+1,n'] \text{ for all } n.
\]

(8)

From (6)-(8), it is readily seen that \(R_{y} \) is completely specified by \(R_{y}[u,0] \) and \(R_{y}[u+1,1] \) for all \(u \). Another equivalent representation is the so called cyclic correlation function, which is defined as a Fourier series coefficient of \(R_{y}[n,n'] \). For \(M=2 \), it is a simple sum or difference,

\[
R_{y}^{+}[u] = \frac{1}{2} \left(R_{y}[u,0] + R_{y}[u+1,1] \right),
\]

(9)

\[
R_{y}^{-}[u] = \frac{1}{2} \left(R_{y}[u,0] - R_{y}[u+1,1] \right).
\]
Taking Fourier transform of (9), we obtain cyclic spectral density (CSD),

$$S_y^o(\omega) = \sum_{n=-\infty}^{\infty} R_y^o[n] e^{-j\omega n} a \in \left\{ 0, \frac{1}{2} \right\}. \quad (10)$$

Note that $R_y^{1/2}[n]=0$ and $S_y^{1/2}(\omega)=0$ for WSS $y[n]$. In this case, $R_y^o[n]$ and $S_y^o(\omega)$ reduces to the conventional autocorrelation and spectral density of WSS processes, respectively. Thus, $R_y^{1/2}[n]$ or $S_y^{1/2}(\omega)$ provides a measure of how close $y[n]$ is to being WSS. The following definition of CSD matrix is useful for TIADC spectral analysis.

$$S_y(\omega) = \begin{bmatrix} S_y^o(\omega) & S_y^{1/2}(\omega) \\ S_y^{1/2}(\omega-\omega/2) & S_y^o(\omega-\omega/2) \end{bmatrix}. \quad (11)$$

It immediately follows that $S_y(\omega)$ becomes a diagonal matrix for WSS $y[n]$. Let $S_x(\omega)$ be the diagonal CSD matrix for the WSS TIADC input $x[n]=\alpha[n]$. It can be shown that $S_y(\omega)$ has the following relationship with $S_x(\omega)$.

$$S_y(\omega) = \frac{1}{4} \left(H \alpha \right)^* S_x(\omega) \left(H \alpha \right)^H \left. \right|_{\omega=\omega_0}$$

$$= \left(H \alpha \right)^* S_x(\omega) \left(H \alpha \right)^H \left. \right|_{\omega=\omega_0} \quad (12)$$

4. ALGORITHM DESCRIPTION

Following the previous discussion, we can achieve the input-output WSS condition by minimizing the norm of $R_y^{1/2}[n]$,

$$\tilde{p}_{opt} = \arg \min_{\tilde{p}} \sum_{n=0}^{U_{max}} \left| R_y^{1/2}[n] \right|^2, \quad (13)$$

where \tilde{p}_{opt} is the best estimation of mismatch parameters, and U_{max} is the maximum time lag to consider. We have yet to answer an important question: Under which conditions does the input-output WSS actually guarantee that $\tilde{p}_{opt}=\tilde{p}$? We begin with $S_y^{1/2}(\omega)$, Fourier transform of $R_y^{1/2}[n]$. From (11) and (12), it is written as

$$S_y^{1/2}(\omega) = S_y^o(\omega) \left(H^*(\omega) - H^*(\omega)H(\omega) + H(\omega-\omega/2) \right)$$

$$+ \left(H(\omega) - H(\omega-\omega/2) \right) H^*(\omega-\omega/2) H(\omega) - H(\omega-\omega/2) . \quad (14)$$

We rewrite CTF’s in a polar form, and apply small-mismatch assumption to yield

$$H(\omega) = (1+g(\omega))e^{j\theta(\omega)} = 1 + g(\omega) + j\theta(\omega). \quad (15)$$

Representing each error term in (15) as a Q-th order polynomial, we have

$$g(\omega) = \sum_{i=0}^{Q} a_i \omega^i, \quad \phi(\omega) = \sum_{i=0}^{Q} b_i \omega^i.$$

Thus, $\tilde{p}=a_1 b_1 \ldots a_Q b_Q$ and $\tilde{p}=\tilde{a}_1 \tilde{b}_1 \ldots \tilde{a}_Q \tilde{b}_Q$. Plugging (16) and (15) into (14), and taking real and imaginary part, we can show that, to a first-order approximation, $S_y^{1/2}(\omega)=0$ is equivalent to the following matrix-vector equations.

$$W e_{\tilde{p}} = 0, \quad (17)$$

$$W e_{\tilde{e}} = 0,$$

where W and coefficient error vectors $e_{\tilde{p}}$ and $e_{\tilde{e}}$ are defined as

$$[W]_{k,n} = S_y^o(\omega_k) a_k n + S_y^o(\omega_k-\omega/2)(\omega_k-\omega/2) \quad (18)$$

$$\tilde{e}_{\tilde{p}} = \tilde{a}_n - \tilde{a}_{n+1} = \tilde{b}_n - \tilde{b}_{n+1} . \quad (19)$$

ω_k’s are F frequency points where either $S_y^o(\omega_k)$ or $S_y^0(\omega_k-\omega/2)$ is nonzero (and therefore positive). If W has at least $(Q+1)$ linearly independent rows, then the only solution of (17) is $e_{\tilde{p}}=0$ and $e_{\tilde{e}}=0$, which means that $\tilde{p}_{opt} = \tilde{p}_0$. Obviously, the input needs to have at least $(Q+1)$ spectral tones, and this will enable identification of up to $2(Q+1)$ real-valued mismatch parameters. As the input spectrum becomes richer, we are more likely to have at least $(Q+1)$ independent rows, guaranteeing unique parameter identification. For theoretical purpose, we introduce the following assumption: The TIADC input has at least $(Q+1)$ distinct spectral tones at ω_k’s, such that only one of $S_y^o(\omega_k)$ or $S_y^0(\omega_k-\omega/2)$ is nonzero. Under this minimal asymmetric tone (MAT) assumption, (17) simplifies to

$$V e_{\tilde{e}} = 0, \quad (19)$$

where V is now a diagonally weighted Vandermonde matrix,

$$[V]_{k,n} = S_y^0(\omega_k) a_n^m. \quad (20)$$

V is nonsingular if and only if a_n’s are distinct. Therefore, the MAT condition is sufficient for unique mismatch identification. The MAT constraint is not too restrictive in practice; only a small fraction of unoccupied input bandwidth is enough. Furthermore, since the probability of W being singular has zero measure, W will be almost always nonsingular even if MAT is not met, as long as the input spectrum is rich enough.

Minimization of (13) can be realized in many different ways, although we discussed only its theoretical aspect due to page limitation. For example, if given enough computational power, exhaustive search can be performed over a single batch of data. Otherwise, gradual descent to the minimum over multiple batches may also be attempted with reduced computational cost (but with slower convergence). Depending on the implementation, observation of either corrected or uncorrected output may be more convenient than the other ($y[n]$ or $y'[n]$ in Fig.1 (c), respectively).

5. SIMULATION RESULTS

In this section, representative MATLAB simulation examples are given to demonstrate the proposed general mismatch correction.

The $M=2$ TIADC under simulation has 12-bit resolution, and each channel has a single pole around $0.6\omega_0$. Mismatch parameters are: 3% static gain error, 0.6% sampling time error and 2% pole location mismatch. The input signal has three equal-magnitude tones at $0.065\omega_0$, $0.185\omega_0$, and $0.405\omega_0$. It is readily seen that MAT is satisfied with Q up to 2. A single batch of 100,000 uncorrected
output samples is first acquired. Its cyclic autocorrelation is computed by time-averaging and then passed to minimization routine. The minimizer first computes 61-tap correction filters using (5) with the current mismatch estimation. Double convolution with correction filters is then performed upon the uncorrected cyclic autocorrelation to obtain R_y^{α}, the cyclic correlation of corrected output. Finally, the norm of R_y^{α} is compared with the previous one (U_{max}=10) and parameter estimation is correspondingly updated, completing a single iteration. Built-in MATLAB searcher is used for parameter update.

Two representative mismatch models are tested for comparison: conventional gain-timing model and 2nd-order polynomial model (Q^2). Fig.2 (a) and (b) each compares the true CTF and its estimation with either mismatch model. Dotted lines are true magnitude and phase response, where the curvature is due to the pole location mismatch. Solid lines correspond to the best estimation, which is also the best fit to the true responses weighted by the input spectral density. 2nd-order modeling gives a good match, and the limitation of gain-timing model is clear. Mismatch-limited SNR is closely approximated by $1/|\tilde{H}(\omega)-H(\omega)|$ which is plotted in Fig.2 (c). Up to 35dB of improvement is observed as a direct result of generalized mismatch modeling.

![Figure 2](image_url)

Figure 2. Calibration results from MATLAB runs. (a) Actual and estimated CTF using gain-timing model and (b) 2nd-order polynomial model (Dotted line: actual CTF response, solid line: estimated CTF response). (c) comparison of SNR level after calibration using each mismatch model

8. CONCLUDING REMARK

We have demonstrated that generalized mismatch errors can be blindly identified and corrected, achieving significant SNR and SFDR improvement (15–35dB), for an M=2 TIADC under realistic assumptions. Parameterized filter banks and cyclostationary spectral analysis is a key to the algorithm implementation and theoretical analysis, respectively.

Polynomial approximation in polar coordinate has been used for the present study, but in principle other parameterizations are also possible. The best parameterization will be application specific: It will capture the physics of mismatches with a minimal number of parameters while systematically avoiding the possibility of false correction. Although we focused on A/D conversion, the proposed approach and theoretical framework can also be applied to general sampling networks where the sampler performance is sensitive to periodic patterning artifacts.

11. REFERENCES

