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Abstract—We study the system-level effects of the introduction
of large populations of Electric Vehicles (EVs) on the power and
transportation networks. We assume that each EV owner solves a
decision problem to pick a cost-minimizing charge and travel plan.
This individual decision takes into account traffic congestion in the
transportation network, affecting travel times, as well as conges-
tion in the power grid, resulting in spatial variations in electricity
prices for battery charging. We show that this decision problem
is equivalent to finding the shortest path on an “extended” trans-
portation graph, with virtual arcs that represent charging options.
Using this extended graph, we study the collective effects of a
large number of EV owners individually solving this path planning
problem. We propose a scheme in which independent power and
transportation system operators can collaborate to manage each
network towards a socially optimum operating point while keeping
the operational data of each system private. We further study the
optimal reserve capacity requirements for pricing in the absence
of such collaboration. We showcase numerically that a lack of
attention to interdependencies between the two infrastructures
can have adverse operational effects.

Index Terms—Coupled infrastructure systems, electric vehicles,
equilibrium, mobility, networked control systems.

I. INTRODUCTION: A TALE OF TWO NETWORKS

ARGE-SCALE adaptation of Electric Vehicles (EV) will

affect the operation of two cyber-physical networks:
power and transportation systems [1]. Each of these systems has
been the subject of decades of engineering research. However,
in this work, we argue that the introduction of EVs will couple
the operation of these two critical infrastructures (See Fig. 1).
We show that ignoring this interconnection and assuming that
the location of EV plug-in events follows an independent
process that does not get affected by electricity prices can
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Fig. 1. Electric Vehicles affect transportation and power delivery networks.

lead to instabilities in electricity pricing mechanisms, power
delivery, and traffic distribution. Hence, we propose control
schemes that acknowledge this interconnection and move both
infrastructures towards optimal and reliable operation.

To achieve this goal, we show that an individual driver’s
joint charge and path decision problem can be modeled as a
shortest path problem on an extended transportation graph with
virtual arcs. We use this extended graph to study the collective
result of all drivers making cost-minimizing charge and path
decisions on power and transportation systems. We then show
that two non-profit entities referred to as the independent power
system operator (IPSO) and independent transportation system
operator (ITSO) can collaborate to find jointly optimal elec-
tricity prices, charging station mark-ups, and road tolls, while
keeping the data of each system private. We show that this
collaboration is necessary for correct price design. We further
study the generation reserve requirements to operate the grid in
the absence of such collaboration.

Prior Art: The study of mechanisms for coping with demand
stochasticity and grid congestion is at the core of power systems
research. In particular, EVs are acknowledged to be one of
the primary focuses of demand response (DR) programs. DR
enables electricity demand to become a control asset for the
IPSO. For example, the authors in [2]-[18], and many others,
have proposed control schemes to manipulate EV charging
load using various tools, e.g., heuristic or optimal control, and
towards different objectives, e.g., ancillary service provision,
peak shaving, load following. However, a common feature
in [2]-{18] is that the location and time of plug in for each
request is considered an exogenous process and is not explicitly
modeled. Very few works have considered the fact that, unlike
all other electric loads, EVs are mobile, and hence may choose
to receive charge at different nodes of the grid following eco-
nomic preferences and travel constraints. This capability was
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considered in [19] and [20] in the problem of routing EV drivers
to the optimal nearby charging station after they announce
their need to charge. The authors in [21] consider the case
where the operator tracks the mobility of large fleets of EVs
and their energy consumption and designs optimal multi-period
Vehicle-to-Grid strategies. Here, we do not consider the case of
fleets and look at a large population of heterogeneous privately-
owned EVs.

Traffic engineering studies mechanisms for coping with road
congestion in the transportation network. At the individual user
level, travel paths are planned to avoid congestion as much as
possible, naturally leading to shortest path problems [22], [23].
When studying the collective actions of users, the so-called
Traffic Assignment Problem is concerned with the effect of
individuals’ selection of routes on the society’s welfare, and
studies control strategies to guide the selfish user equilibrium
towards a social optimum, e.g., [24], [25].

Recently, a line of research has emerged to study the effect of
EVs on transportation systems. For example, [26]-{28] look at
the individual path planning problem by minimizing the energy
consumption of EVs, leading to a constrained shortest path
problem. However, the interactions with the power grid are not
modeled. At the system-level, [29], [30] study efficient solu-
tions for characterizing the redistribution of traffic due to the
charge requirements of EVs (paths are forbidden if not enough
charge is received to travel them). In contrast to our work, in
[29] and [30], electricity prices are respectively not considered
and taken as given. Accordingly, these works are complemen-
tary to ours and do not address the electricity price design
aspect that we are interested in (more details in Remark II1.3).
To the best of our knowledge, the only work that considers
price design is [31]. In [31], charge is wirelessly delivered to
EVs while traveling. Hence, EVs can never run out of charge.
The authors show that if a government agency controls the
operations of both the transportation and power networks or
can design tolls as a decentralized control measure, the effect
of EVs on the grid can be optimized by affecting the drivers’
choice of route. In spite of a somewhat similar set up, [31]
and our work have major differences: 1) our model is different
in that we assume EVs make stops at charging stations and
the amount of charge received is a choice made by the driver,
leading to a different pricing structure, based on the concept
of virtual charging arcs; 2) we consider the IPSO and ITSO as
two separate entities and look at how they can design prices
if they collaborate together with minimal data exchange using
the principles of dual decomposition. We also study the adverse
effects of the lack of such collaboration; 3) we study how the
IPSO can set prices in the absence of such collaboration through
procuring generation reserves.

Remark I1.1: To be able to derive analytical results, we
have chosen to remain in a static setting. This means that the
customers’ travel demand, the baseload, and generation costs
are all time-invariant. Our preliminary work published as a
conference paper [32] models this problem under a dynamic
setting. The main contribution of [32] is proposing the general
model of the ESPP and the extended transportation graph.
However, the dynamic model studied in [32] in its full gener-
ality was not amenable to an analytical characterization of the
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Fig. 2. The entities involved in the control problem.

aggregate control problem and hence could not provide design
insights. In contrast, the present work introduces significant
simplifications by considering a static setting. The static for-
mulation removes the nonconvexity of the problem and allows
for a novel analytical treatment.

II. OVERVIEW

We study a large network of EV and Internal Combustion
Engine Vehicles (ICEV) owners that optimize their daily trip
costs, including the path they take to complete a trip as well
as refueling strategies. A short model of the decision making
process by individual EV drivers is first presented in Section III,
mainly to introduce the extended transportation graph, a novel
concept we use in this paper to integrate individual decisions
into system-level control strategies for coupled infrastructures.
The extended graph construct captures the fact that EVs’
route and charge decisions are affected by the state of two
networks, namely the power and the transportation networks.
The transportation network is managed by a non-profit ITSO
(red circle in Fig. 2), who knows about the trip patterns of the
population and can impose tolls on public roads to affect the
individuals’ routing decisions. The power network is managed
by a non-profit IPSO (light gray circle), who controls electricity
generation costs (green circle) and is in charge of pricing elec-
tricity that affect individual EV’s charging decisions. Ideally,
we would like to minimize the total transportation delay and
electricity generation cost that the society incurs. However, as
the IPSO and the ITSO are two separate entities, we study
whether they can achieve this goal with or without direct col-
laboration under various schemes presented in Section IV (and
in Fig. 5). We numerically study these schemes in Section VI.

III. THE INDIVIDUAL DRIVER’S MODEL

Let us first focus on the decision making process of an
individual EV driver (the blue circle in Fig. 2). In order to
complete a trip, the driver needs to decide on 1) which path to
take to get from his origin to the destination and 2) the locations
at which he/she should charge the EV battery and the amount
of charge to be received at each location. We model the cost
structure associated with these decisions next.
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TABLEI
TABLE OF NOTATION

Set of nodes in the transportation network
Set of arcs in the transportation network

Set of nodes with charging facilities

The transportation graph

Set of energy-feasible paths that connect the
origin and destination for an individual user

A0z <
SIS

s, 2 Length of path k
Ao 2  Flow on arc a of transportation graph
Ao £ Flow into charging station located at node v
Po = Price of electricity at node v
ey, =  Energy received at node v
E, £  Set of possible charging amounts at v
6y = Plug-in fee at node v
py 2 Charging rate at node v
Ta(>\a) S Latency function of traveling on arc a
Tw(Ay) £ Wait time to be plugged in at node v
~ £ Value of time to users
Sa(Aa) £ (Cost each user incurs for traveling on arc a
Sv(ev, Av) £ (Cost to receive charge of e, at node v
ea 2  Energy required to travel arc a
G¢ £  The extended transportation graph
S £ Set of nodes in G¢
L &  Setof arcs in G¢
L, 2  Set of virtual charging arcs for charging sta-
tion at node v
C £  Setofall virtual charging station entrance and
bypass arcs
bao £  The electricity bill to charge for virtual arc a
o £ Set of different origin-destination clusters g
Kq £ Set of feasible paths on G€¢ for cluster g
mg 2  Rate of EVs in cluster ¢
fé“ = rate of cluster ¢ EVs that choose path k € Iy
fo = [fflkex,
A, £ Arc-path incidence matrix for cluster ¢
g = Vector of generation outputs at all network
nodes
c(g) £  Vector of network generation costs
u £ Vector of inelastic non-EV demand at all
network nodes
d = Vector of EV charging demand at all network
nodes
H 2  The power transfer distribution matrix
c % Line flow limits
M £  Matrix that maps virtual link flow to power
system load
s¢(Xa) = Auxilary cost function for arc a (see (18))
wiN) = [ s6(@)drace
& £  Reserve capacity prices at all network nodes
r £  Reserve capacity prices at all network nodes

Notation: We use bold lower case x to indicate vectors
and bold upper case X to indicates matrices. The notation
Xz = [2;],o7 indicates that the elements that comprise a column
vector or a matrix each correspond to a member of a set Z. The
symbols < and > denote element-wise < and > inequalities in
vectors. The transpose of a column vector x is denoted by x”.
The all one and all zero row vectors of size j are denoted by
1., and Oy respectively.

A. Congestion Costs

We model the transportation network through a connected
directional graph G = (V,.A), where V and A respectively
denote the set of nodes and arcs of the graph.

Ta ()\a)a €a

Origin Destination

-

&Fast charging station

Fig. 3. The transportation graph G.

Traveling on the transportation network is associated with a
cost for the user since he/she values the time spent en route.
The time to travel between an origin and a destination node
is comprised of the time spent on arcs that connect these two
nodes on G. Here, we adopt the popular Beckmann model for
the cost of traveling an arc, i.e., a road section [33]. Accord-
ingly, we assume that the travel time for each arc a € A only
depends on the rate of EVs per time unit that travel on the arc,
which we refer to as the arc flow and denote by A = [A\q], 4-
The time it takes to travel arc a is then represented by a latency
function 7,(As), which is convex, continuous, non-negative,
and increasing in A. The congestion cost that a user incurs for
traveling arc a is given by

Sa(>\a) - ’yTa(Aa) (1)

where 7 is the cost of one unit of time spent en route. Hence,
the cost to travel link a is

total cost to travel link a = s,(\,) + 6, 2)

where 6, corresponds to any tolls that the driver should pay to
the ITSO, if any such toll is enforced for link a.

Moreover, traveling each arc a € A requires a certain amount
of energy e, (see Fig. 3). Energy needs to be received from the
power grid and stored in the EV battery. The cost that the user
incurs to receive battery charge is modeled next.

B. Charging Costs

A subset of nodes on the transportation network N' C V
are equipped with battery charging facilities and, hence, the
EV drivers have the choice of charging their batteries at these
locations. Naturally, to be able to provide charging services,
the nodes A\ are also a subset of the nodes B that constitute
the power grid graph R = (B, F). Each node v € B has an
associated price for electricity p,. Consequently, if the EV
driver chooses to charge at location v, he/she will pay

electricity cost of charging = p,e, + 0, 3)

where e,, € &, is the battery charge amount received at v chosen
from a finite set £,, and 6,, corresponds to a one-time plug-in
fee for the charging station at v. Moreover, if v is not the origin
of the trip, the driver needs to spend some extra time en route
in order to receive charge at v. This is due to any congestion at
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the fast charging stations (FCS) plus the time it takes to receive
charge. Hence, an extra inconvenience cost is incurred. If the
charging rate at FCS v is p,, and the rate of EVs being plugged
in for charge at this location is denoted by \,,, this cost is equal to:

v (,e)_ + Tv()\v)) , wvisanFCS

Sv (ev; Av) =
0, v is trip origin node

“

where 7, (), ) denotes the wait time due to congestion, and is a
soft cost model to capture limited station capacity.

C. The Extended Transportation Graph With Virtual Arcs

The EV driver’s goal would be to find the least cost path that
connects the origin and the destination on the transportation
graph G while making sure that the EV battery never runs out
of charge.!

Here, we show that we can recast the EV driver’s route and
charge problem as a resource-constrained shortest path problem
on a new extended transportation multigraph G¢(S, L). This
definition will help us study and control the aggregate effect of
individual EVs on power and transportation systems.

Definition III.1: A travel path k on the graph G is charac-
terized by an ordered sequence of arc indices a; where the
head node of [ay]; is identical to the tail node of [ay];,, for
alli=1,..., s — 1. The length of path & is sj. Alternatively,
if G is simple, path k can be written as an ordered sequence of
sx node indices vy, (excluding the destination node). We further
denote a vector of previously defined quantities associated with
the arcs aj, using subscripts, €.g., €a, = [€a],cqa, and Sa, (Aa;)
respectively denote the vectors of charge amounts and travel
time required to travel each arc on path k.

To complete a trip, the driver incurs two forms of costs:
the cost associated with arcs and the cost associated with the
charging decisions taken at nodes. However, we can observe
charging is very similar in nature to traveling: 1) it takes a cer-
tain amount of time (due to both charging rate limitations and
congestion); 2) it has a cost; and 3) it changes the energy level
of the battery. Acknowledging this similarity, we transform
the EV driver’s decision problem to a shortest path problem
by associating charging decisions made at the nodes v of the
transportation graph to a set of new virtual arcs to be added
at each node v € N where charging is possible. At each origin
and destination node where charging is possible, the following
transformation would capture all decisions:

* The decision of how much to charge: a set of virtual arcs
L, added at node v are each associated with a specific
choice of how much to charge, i.e., ¢, € &,. Hence, the
energy gained by traveling each new virtual arc is set to be
one such member of &, (red arcs in Fig. 4). Equivalently,
we can say that the energy required to travel the virtual
arc is negative. Travel time is e, /..

INote that with the cost structure we have defined, the EV driver will reach
the destination with minimum-possible leftover charge. An extension of the
analytical framework to include the value of leftover charge at the destination
in the optimization is trivial and has been removed for brevity of notation. We
refer the reader to our conference paper [32] for this extension.

(Xa); €a

Origin Destination

virtual hnks

corresponding to &; N //
e _

virtual links Jah?t‘;{ op

corresponding to &

Fig. 4. The extended graph corresponding to Fig. 3.

At the FCS, these transformations capture all decisions:

» The decision to stop or skip stopping at a charge station
en route: the driver can either take a charging station
entrance arc (labeled “stop” in Fig. 4) and plug in their
EV at the station, or skip stopping at the station via a
bypass arc with zero travel time and energy requirements
(green arcs in Fig. 4). Charging station entrance arcs can
be congested;

* The decision of how much to charge if stopping at v: the
charging station entrance arc is connected in series to a
set of virtual arcs £, capturing the choice of amount of
charge e, € &, (blue arcs in Fig. 4).

The flow on the charging station entrance arc will capture the
wait time to be plugged in at the station. The set of all entrance
and bypass arcs for all charging stations is C. The new extended
transportation graph with these virtual arcs would then have the
following set of arcs:

L = (UpenLo) UCU A

Consequently, the transformed problem seeks a shortest path
on this extended graph from the origin to the destination, with
the cost of traveling each arc being the sum of its travel time
cost and all monetary charges such as the electricity bill or tolls.
The travel time costs on G¢(S, £) is given by

¥7a(Xa)y a€ AUC
5a(Na) = %, a€ Ly,,veN —origin (5
0, a € L,, v = origin.

All other monetary costs can be captured as

b, = O, ac AUC ©)
pvem aE£U7'U EN

and hence, each driver selfishly optimizes their trip plan by
solving the energy-aware shortest path problem (ESPP)

min 11xs, (Sa, (Aa,) + ba,) @)
kel
where IC is now the set of energy-feasible paths that connect
the origin and the destination on the extended graph G¢(S, £).
Energy-feasibility of a path ensures that the battery will never
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run out of charge en route. Next, we define energy-feasibility
mathematically.

Definition I11.2: A path k is energy-feasible on G° iff Vj =
1,...,8k:

0 < Initial charge — [11,j,015(s,_j)] €a, < battery capacity.

These two constraints ensure that the EV never runs out of
charge en route if taking path k, and that the battery charge state
never exceeds battery capacity. A vector of dimension zero is
simply empty. Note that with this definition, we can determine
whether a path is energy-feasible independently of the network
congestion mirrored through A,, . Hence, for system-level con-
trol of A5, , the set of energy-feasible paths can be calculated
offline.

Remark I11.3: The ESPP (7) can be solved using dynamic
programming (DP) algorithms with pseudopolynomial com-
plexity [34]. Polynomial-time Dijkstra-like algorithms for solv-
ing the shortest path problem cannot be applied due to the
existence of the energy-feasibility constraint (see [26], [35]).
This is mainly because the cost of a path is no longer just the
sum of its arc costs (as energy constraints cannot be attributed
to individual arcs but a sum over multiple arcs). Proposing
efficient solution methods for the ESPP is beyond the scope
of this paper. Instead, our focus is to use the extended graph
to study aggregate control strategies. We refer the reader to
recent papers studying efficient solutions and search heuristics
for variations of ESPP, e.g., [30], [36]{38]. For our small nu-
merical experiment, we use a brute force approach to enumerate
all loop-free energy-feasible paths for all origin-destination
pairs on the extended transportation graph, as often done in
the transportation literature. While for our small experiment
the complexity of this approach does not pose a computational
challenge, in more realistic models this is an issue that needs to
be properly addressed to allow scalability. We will consider this
issue as part of our future work.

Now, imagine that every EV owner in the society solved
(7) to plan their trips. These users share two infrastructures:
the transportation network, and the power grid. Hence, collec-
tively, EVs give rise to a traffic and load pattern, determining
which roads and grid buses are congested and hence, will have
longer travel times and higher electricity prices. Through this
interaction, individuals affect each other’s cost, leading to the
system-level problem that we are interested in.

IV. SYSTEM LEVEL MODEL

At the system level, the extended transportation graph helps
us study the collective effect of individual drivers on traffic and
energy loads as a network flow problem. Here, virtual arcs are
added at all potential origins and FCSs.

At the aggregate level, the system variables, i.e., the flow rate
of vehicles on arcs ), the price of electricity p,, and the tolls
0, can no longer be considered as variables imposed upon the
system but rather as variables to be jointly optimized by system
operators.

If a single entity was in charge of monitoring the state
of both networks and controlling all EVs’ charge and route

decisions, they can maximize the social welfare by solving for
the optimum route and charge plan for each individual such
the the total transportation congestion and generation costs
that the society incurs is minimized. In doing so, this entity
needs to ensure that the constraints of the transportation and
power systems are not violated. The power system’s constraints
ensure the balance of supply and demand in the grid and that
the physical limits of transmission lines are not violated. The
transportation system constraints ensure that every driver will
be able to finish their travel.

In reality, power and transportation systems are operated by
the TIPSO and the ITSO respectively, and their operational data
is not shared. The IPSO is in charge of optimizing generation
costs subject to power system constraints, and the ITSO is in
charge of optimizing transportation costs subject to transporta-
tion system constraints. Also, individuals’ route and charge
decisions can only be affected through prices. We first study the
ITSO and IPSO strategies separately in Section IV-A and B and
their optimal pricing. Then we look at how they interact (and
possibly achieve the socially optimal outcome) in Section V.

A. The ITSO’s Charge and Traffic Assignment Problem

We assume that drivers belong to a finite number of classes
q € Q. Vehicles in the same class share the same origin and
destination. Vehicles could include both EVs as well as ICEVs.
A given class g would contain either EVs or ICEVs but not
both. Drivers of the same class ¢ are represented by a set of
feasible paths K, each of which allows them to to finish their
trip on the extended graph. For EVs, this is equivalent to the
set of energy-feasible paths given in Definition II.2 and can be
enumerated offline for each class. For ICEVs, we can assume
these paths simply include transportation arcs in .4 that connect
the origin and destination, and do not enter charging stations.
Clearly, any other path selection method that considers more
realistic constraints can also be applied. We leave the study of
optimal clustering mechanisms that assign heterogeneous users
to a finite of number of classes to future work.

Each customer directly affects the flow of the arcs that
constitute his/her path. To model this effect, we define:

* my as the travel demand rate (flow) of EVs in cluster g.
This demand is taken as deterministic and given;
* f¥ as the rate of cluster ¢ EVs that choose path k € KC,.

We define f, = [fé“]ke]C .

Naturally, since every driver has to pick one path, the following
conservation rule holds:

178, = m,. ®)

Given the path decisions of all EV drivers, i.e., the fq”s, the
flow of EVs on arc a is given by Ao = 3=, g ye, 04 fy» Where

" is an arc-path incidence indicator (1 if arc a is on path k and 0
otherwise). This is written in matrix form as

A=) Af, )

qeQ
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where A = [\;] ., denotes the vector of network flows and A,
is a |L] x |KCy| matrix such that [A,], , = 5.

The flow on the virtual arcs of the extended graph leads to a
power load. We denote the charging demand at each node v € BB

of the grid as a vector d = [d,], . given by
d =M (10)
where M is a |B| x |£| matrix given by
€ay €Ly, vEN
M]oy,q = (11)
0, else.

Let 8(A) = [s4(Aa)] e If an ITSO is in charge of deter-
mining the optimal path and charge schedule for each EV such
that the aggregate cost is minimized, it can solve a modified
version of the classic static traffic assignment problem [39] on
the extended graph, which we refer to as the charge and traffic
assignment problem (CTAP)

min ATs(X\) + p’d

fq,q€Q
f, -0, Vge 9
17, = my, Vge Q
A= qugAqfq, d =M\

s.t. (%) (12)

where p = [py], -

B. The IPSO’s Economic Dispatch Problem

To serve the charging demand of EVs, a set of generators are
located at different nodes of the power network R = (B, F). For
brevity, let us assume that a single merged generator is located
at each node of the grid. Assuming that the generation at each
node is denoted by a vector g = [g,],.5 and the baseload (any
load that does not serve EVs) by a vector u = [u,], ., there are
three constraints that define a feasible generation mix g in the
power grid. First of all, g, must be within the capacity range
of the generator at node v, i.e., gmin =< g = g™®* Second, the
demand/supply balance requirement of the power grid should
be met, i.e.,

17(d+u—-g)=0. (13)

Third and last, the transmission line flow constraints of the grid
under the DC approximation [40] translate into

H(d+u-g)=<c (14)
where the matrix H is the power transfer distribution matrix of
the grid, explicitly defined in [40], and ¢ = [cf] ;. 7 is a vector
containing arc (line) flow limits (in both directions).

In most power grids, one such feasible generation mix g is
picked by an IPSO to serve demand. We assume that at least one
feasible generation mix always exists for every possible load
profile. The IPSO’s objective is to pick the cheapest feasible
generation mix. Let us denote the cost of generating g, units
of energy at node v € B as a strongly convex and continuous
function ¢, (gy), and the vector of generation costs as ¢(g) =
[cv(9v)],ep- Given a demand d from EVs, the IPSO solves an

economic dispatch problem to decide the optimal generation
dispatch g [41]

g =argming 17¢(g)
s.t. gmin =< g = gmax7 ].T(d +u-— g):O7

H(d+u-g)=<c. (15)

Note that the optimal traffic and generation schedules deter-
mined through (12) and (15) minimize the total cost to society.
However, they do not necessarily minimize the cost of each
individual entity that is involved, e.g., the EV drivers or the
generators. Hence, one cannot merely ask these selfish users to
stick to the socially optimal schedule. An economic mechanism
is necessary to align selfish behavior with socially optimal
resource consumption behavior. The use of pricing mechanisms
is a way of achieving this goal in a distributed and incentive-
compatible fashion. We highlight pricing mechanisms that can
be used for (12) and (15) next.

C. Pricing Mechanism for Electric Power

To incentivize profit-maximizing generators to produce at an
output level g,,, we apply the principle of marginal cost pricing.
The principle states that the electricity price at node v, i.e., Py,
must satisfy

dc, (9 v)
99y

=py, = Vgllec(g) = p. (16)

Let us introduce Lagrange multipliers v and p respectively for
the balance and line flow constraints in (15). Writing the KKT
stationarity condition for (15) then leads to

p=71+H"p (17)
commonly referred to as Locational Marginal Prices (LMP) in
the power system literature. The reader should note that this is
the same price vector p that is fed into the ITSO optimization
(12) and would affect the charging demand at different nodes
of the grid, i.e., d in (15), which would in turn affect the price
p again. This feedback loop highlights the coupling between

smart power and transportation systems that we are interested
in, further studied in Section V.

D. Tolls to Align Selfish User Behavior With Social Optimum

In the transportation network, if every user solves an ESPP
given in (7) and no tolls are imposed by the ITSO (6, =
0, Va € AUC), the aggregate flow would be determined based
on a state of user-equilibrium. This user equilibrium flow is
most likely not equivalent to the social optimal flow in (12). To
mathematically characterize this equilibrium, define an auxilary
modified cost function s¢(X) = [s¢(A,)],,. for the extended
transportation graph’s arcs as

acl

s°(A) =s(A\)+M”p (18)
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with s(A) and M given by (5) and (11). Moreover, let
wé(A) = [fz/\:‘*o sq(z)dz],_,. Then, according to the well-
known Wardrop’s first principle [42], the user equilibrium flow
would be the solution of the optimization problem:

H%in 1Twe(N)

s.t. Constraints (x) in (12). (19)
So how can the ITSO get the individual drivers to follow the
socially optimal flow calculated in (12)? We present the answer
in Theorem IV.1.

Theorem IV.1 (Marginal Congestion Pricing): The aggregate
effect of individual route and charge decisions made by EV
drivers, i.e., the solution of (19), will be equivalent to the
optimal social charge and route decision in (12) iff the ITSO
imposes a toll ¥ = [,],., at each arc of the extended graph
equal to the externality introduced by each user that travels the
arc on the other users’ costs, i.e.,

9 = V (diag(A)s(X)) — s(A). (20)

Proof: Using the definition of the modified cost vector

s¢(A), (12) can be written as a classic traffic assignment
problem:

min AT ()

q

s.t. Constraints (x) in (12). 21
The result then follows from applying classic results on
Wardrop’s first and second principles [42] to the extended
graph, acknowledging that V(diag(A)b) = b. O

Remark IV.2 (Congestion Mark-up at Charging Stations):
The arc toll 6, on the virtual charging station entrance arcs
would correspond to a congestion mark-up (plug-in fee) for all
EVs stopping at each station. This captures the user externality
introduced by limited charging station capacity. The spots at
FCSs located at busy streets and highways or ones that allow a
user to take less congested routes are coveted by many drivers
and thus have higher plug-in fees.

V. INTERACTIVE NETWORK OPERATION

For scalability reasons, the IPSO cannot be expected to
consider detailed models of the transportation system demand
flexibility when calculating the prices p. However, we next
show that completely ignoring the interconnection between the
two infrastructures (the status-quo) can have adverse effects on
both infrastructures. This motivates us to introduce a collabo-
rative pricing scheme using dual decomposition. The schemes
we study for interactions between the IPSO and ITSO towards
network operation are highlighted in Fig. 5.

A. Greedy Pricing

Let us look at the scenario that would happen if no corrective
action is taken in regards to how the grid is operated today and
hence, smart transportation and energy systems are operated

Utopia (22) Minimize social cost
Pricing

Collaborative
Priomg | (U2 1TSD 5 P50

5)&(31) TIPSO

Trial-and-Error 1
Pricing

Fig. 5. The different network operation schemes studied.

separately. In this disjoint model, the IPSO ignores the fact that
the load due to EV charge requests can move from one grid
bus to another in response to posted prices. Instead, LMPs are
designed assuming that charge events will happen exactly as
in the last period (this could be the previous day, the average
of the previous month, etc.). On the other hand, the ITSO
ignores the effect of EV charge requests on electricity prices,
and takes electricity prices as a given when designing road and
FCS congestion tolls.

Claim: Under this greedy pricing scheme, the congestion and
electricity prices 8 and p could oscillate indefinitely.

We substantiate this claim through a numerical example in
Section VI. This, along with the loss of welfare experienced
when our infrastructure is operated at a suboptimal state, mo-
tivates us to look into schemes which can allow the ITSO and
IPSO to operate their networks optimally and reliably.

B. Collaborative Pricing

Proposition V.1: An efficient market clearing LMP p can be
posted through a ex-ante collaboration between the IPSO and
ITSO following a dual decomposition algorithm.

Proof: A market clearing price is efficient (maximizes
social welfare) if the flow and generation values A* and g* are
the solution of

min ATs(A) +17¢(g)

f,.g
fq t 0 gmin j g j gmax

s.t. ¢ 17f, =m, 1"MA+u-g)=0 (22)
A=2" oAy HMA+u-—g)=<c

The last two constraints contain both decision variables and
couple the TIPSO and ITSO optimization problems. Let us
introduce Lagrange multipliers v and g respectively for the
balance and line flow constraints. The partial Lagrangian of (22)
considering only the coupling constraints is

L(fy|ge0, 2,7, 1) =ATs(A)+17¢(g) +717 (MA+u—g)
+p" (HMA+u—g)—c) (23)

with ¢ = 0. Since L(f;|4c0, 8,7, i) is separable, we can min-
imize over f;|,c0 and g in two separate subproblems, allowing
us to use standard dual decomposition with projected subgra-
dient methods to find the optimal price. Consider a sequence
{7} and {u®} of Lagrange multipliers generated by the
iterative decomposition scheme. Then, at the k-th iteration, the
ITSO solves for the optimal extended graph flow AR through a
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subproblem that has the same structure as (12), with electricity
prices at iteration k, p(¥), set as

p(k’) - 'y(k)l + HTu(k’). (24)

On the other hand, the subproblem solved by the IPSO is

T
g™ —arg ming 17¢(g) — (’y(k)l + HT;L(k)) g

s.t. gmin j g j gmax. (25)
The IPSO then updates the balance and congestion components
of the LMP, i.e., 7*) and u(®), through

~ (k1) )+ oy, <1T (MA(k)+u—g(k)))
(u(kJrl)) - {N(k)+ak (H (M/\(k)—i—u _ g(k>) —C) }+

It is shown that with a small enough step size, the dual
decomposition method converges to the solution of (22)
[43]. Hence, if the electricity price p is v*1+H7 pu* =

limy oo 71 + H” (¥, the market clears and the generator
outputs and system flow will be equal to g* and \*. O

C. Optimal Reserve Capacity for Trial-and-Error Pricing

In theory, the above algorithm can eliminate the need for
the existence of an ex-ante? ITSO collaboration for calculating
electricity prices. Instead, imagine that the IPSO can actually
post electricity prices according to (26) and gradually find
the optimal market clearing LMP by observing the charging
demand of the actual transportation system.> When dealing
with unknown demand functions in commodity pricing, this is
referred to as the trial-and-error approach, see, e.g., [44], for
prior use of such approaches in toll design.

Implementing this approach has two requirements:

1) The IPSO should be willing to move away from the
greedy pricing scheme in order to eventually maximize
societal welfare (even though the extra welfare generated
might not be easily quantifiable and the operating point
might not correspond to minimum generation costs);

2) More importantly, primal feasibility is most likely vio-
lated when using Lagrangian relaxation to handle cou-
pling constraints in (22). This means that when posting
prices according to (26), the IPSO should expect the
balance and flow constraints to be violated in order for
the algorithm to converge, and plan accordingly. In power
grids, any unpredictable violation of reliable system op-
eration is referred to as a contingency (a threat to the
security of the system) and is handled through generation
reserves.

2The term ex-ante refers to actions that are adjusted as a result of forecasting
user behavior and not actual observations, while ex-post refers to actions that
are based on actual observations rather than forecasts.

3Note that this is only possible if the time-scale at which the network flow
A reaches its new equilibrium in response to new posted prices p and tolls 8
is much smaller that the time-scale at which electricity costs or travel demands
change.

Definition V.2 (Reserves): In power grids, a generation re-
serve capacity of r = [r,],_; allows the IPSO to compensate
for any demand-supply imbalances after market clearing as
long as y, € [—7ry, 7], or equivalently —r <y < r. This is
typically done by adjusting the output of an already online
generator either upward or downward. Given a reserve capacity
of r, the balance equation will become

1"d+u-g-y)=0, -r<y=<r (27)
where y can be chosen at the IPSO’s discretion after observing
the demand d. The reserve capacity r should be procured in
advance.

Note that the dispatched reserve generation y affects the line
flows and hence the flow constraint becomes

Hd+u-g-y)=c (28)

Here we will use bounds on primal infeasibility to determine
the reserve capacity r that needs to be procured by the IPSO
in this type of ex-post LMP adjustment. For simplicity, we
consider a constant step size rule such that o, = « for all k.
Note that in this scheme, after each price adjustment iteration
p*)| the approximate primal solutions, which are the last iterate
A*) and g™ are actually implemented. Assume that the IPSO
knows that during the k-th iteration

<(w)
Wi

(0
H (d(k) +u-— g(’“)) —c

where d®) = MA® | For dual first order algorithms such as

dual gradient and dual fast gradient methods (any of which

can be employed by the IPSO for price update), such bounds

were recently provided by [45]. For example, for dual gradient

methods, one possible bound is given by

(=) - | <Z(£))2\/E<Z:)

where a = ay, < 1/Lg4, ¥V k and L is the Lipschitz constant for
the dual problem of (22). We now need to show that the bound
in (30) is well-defined.

Lemma V.3: The dual problem of (22) has finite Lipschitz
constant and bounded optimal dual variables, i.e., Ly < oo and
[[(v*, )| < oo

Proof: The finiteness of L is a consequence of the strong
convexity of the objective function* of (22) [45]. Furthermore,
we see that (22) is a convex problem with linear inequality
constraints and its optimal objective value is finite (as we
have assumed that at least one feasible generation mix exists
for every possible load profile). Consequently, strong duality
holds for (22) and there exists a set of bounded optimal dual
variables. O

To calculate (30), the IPSO has to access to the set of
potentially optimal energy and congestion prices v and pu.

(29)

2] (30)

4Recall that sa(Aa) is non-negative, convex and increasing [cf. (1)], there-
fore the product A Sq(Aa) is strongly convex.
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Without access to travel patterns, an estimate of the upper
bound to ||(v*, u*)||2 can be evaluated using many methods.
For example, we can calculate these bounds by a) performing
Monte-Carlo simulations by setting d to different values be-
tween its upper and lower bounds given the limited capacity of
charging stations (charging stations operating anywhere until
full capacity) [46]; b) studying critical load levels as suggested
in [47]; c) solving a Mathematical Program with Equilibrium
Constraints (MPEC) [48]. We chose to solve an MPEC to find
this bound; see Appendix A.

Given (29), the IPSO needs to ensure that (27) and (28) hold
by appropriately choosing a reserve capacity ry to be procured
for each future k to ensure system security.

Proposition V.4 (Security-Constrained Ex-Post Price Adjust-
ments): Given unit reserve capacity prices &, at each node of
the power grid for iteration k, the optimal reserve capacity rj;
to be procured at different grid buses for iteration k of the price
adjustment algorithm is given by

ry = argmin &} 1y,
'y

s.t.  max —9§1T77j+(H77j_C)T9§_r£( §+0§1)§0
n3,v35,0Vi
3D

where the constraint is a piecewise-linear function of ry, and
the numbers (8°,7),i=1,...,1,j =1,...,.J are given.

Proof: The optimal reserve capacity ry is equal to the
cheapest possible nodal reserve capacity combination that can
restore the network balance and flow constraints under any
possible amount of feasibility violation specified in (29), i.e.,
we have the following robust optimization problem:

r; =argmin,, &1y
1"(n—y)=0
c

32
H(n-y)= G2)

s.t. Vné./\f,ﬂy:|y|-<rk:{

where 7 =d 4+ u — g and
N = {TI : |1TTI| < ag, HTI_C = Wis Mmin =n = nmax}

where 71),,;,, and 17, denotes the minimum/maximum possible
7). Problem (32) is equivalent to

r; =argmin,, &1

st. Vn eN :Q(n,ry) is feasible (33)
where
Q(n,ry) = H;}Il 0
st. 1Ty =1Tn, —~Hy <c—Hnp—r, <y <rp. (34

If Q(n,ry) is feasible, its dual problem Q*(n, ry) is bounded
and the dual optimum will be 0. Thus, we can write (33) as

* . T
r, =argming, £, Tk

st. VnpeN :maxF(n,0,ry) =0 (35)
0cT

where

T ={0=(01,02,03,04)62,03,04 > 0,
011 — HTBQ —03+0, = 0}
F(n,0,r;) = —611"n+(Hn—c)" 0, -1} (03+64). (36)

Since 0 € T, this is equivalent to

r; = argmin,, £; 1

-t F(n,0 <0.
M T O <

(37)

Note that F'(n, 0, r}) is neither convex nor concave in 1 and
6 (bilinear). The constraint set n € A/, 0 € T is a polyhedron
and hence, the optimal solution of maxyecx.ge7 F'(1, 6, 1ry) is
one of the extreme points (8", %), =1,...,1,j=1,...,J
of the polyhedrons 7 and N. This shows that the constraint is
a convex piecewise linear function in ry. O
Remark V.5: In general, we have no knowledge
of the extreme points of N and 7, and computing
maxpen ge7 F(n,0,r) is non-trivial. Hence, proper ap-
proximation algorithms need to be studied for solving (31).
However, this is out of the scope of this paper. See [49] for
the treatment of a somewhat similar problem, where the use
of an outer approximation algorithm is proposed. Instead,
in our numerical results, we resort to a sample/scenario-
approximation method [50, Chapter 2.6]. For example, we
replace the set 7 x AN by a finite set {(0;,7;),i=
1,...,Ns} €T x N. In this case, (37) will be turned into a
convex program with a finite number of linear inequalities.

VI. NUMERICAL EXAMPLES

This section investigates the need for the joint EV manage-
ment scheme we propose through numerical analysis of system
performance. We focus on the system level optimization. We
assume that charging stations are publicly owned infrastructure
for the sake of simplicity. This means that we assume electricity
is sold at wholesale prices to EV drivers.

The transportation network G is shown in Fig. 6. For each arc
(road section), we define the latency function as

Ta(Aa) = Ty + Ao /10 (38)

where T}, is the minimum time required to travel through arc
a. We set v = $10~3 /minute for the cost spent en route. Note
that this might seem like a rather low number but it would be
scaled up by a factor of 10 if electricity is traded at retail prices
instead of wholesale. The power network R is modeled using
the line and generation cost parameters of the IEEE 9-bus test
case, except that several more buses are modeled as load buses
where EVs can charge; also see Fig. 6.

The intermediate nodes, i.e., Winters, Fairfield, Mountain
View and Fremont, are equipped with an FCS. Each FCS is

STn reality, EV drivers may purchase flat rate charging services from for-
profit entities that trade with the wholesale market and can use appropriate
economic incentives (similar to the tolls discussed in this paper) and recom-
mendation systems to guide the customers towards optimal stations. This is
beyond the scope of this work.
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Fig. 6. (Left) The transportation network G for the trip from Davis to San Jose.
The value next to each arc denotes the minimum travel time 7, (in minutes);
(Right) The power network R. The base load u, at each node is denoted in
italic. Each of the intermediate node is equipped with an FCS.

capable of supplying 1 kWh to an EV every 5 minutes, and
the available charging options are {0, 1, 2, 3} kWh (the same
charging options hold for the origin). It is assumed that each
EV consumes 1 kWh of energy to travel 25 miles, and the
battery capacity is 6 kWh for all EVs. There are two O-D pairs
considered in the network. Specifically, 50% of the drivers are
traveling from Davis, CA to Mountain View, CA; and 50% of
the drivers are traveling from Davis to San Jose, CA. At the
origin, i.e., Davis, the EVs have an initial charge of 4 kWh. As
such, there are |Q| = 2 classes of users.

In the first numerical example, we study how the total num-
ber of EVs can affect the IPSO/ITSO’s decision. We assume full
IPSO/ITSO cooperation such that the social optimal problem
(22) can be exactly solved. As seen in Fig. 7, the traffic pattern
changes as we gradually increase the total number of EVs per
epoch. For instance, more EVs are routed through Winters,
instead of going to Fairfield from Davis directly; similar obser-
vations are also made for the Fairfield-Mountain View-San Jose
path. This is due to the fact that the power/transportation
network has become more congested, leading to a different
traffic pattern.

Our next step is to study the scenario with ex-ante IPSO/
ITSO cooperation. We compare the myopic pricing scheme
to the dual decomposition approach. The first task is to in-
vestigate the behavior of the system under the myopic pricing
scheme. The total number of EVs is fixed at 2.26 x 10* per
epoch. In this case, we initialize the electricity price at each site
at $50 per MWh to solve (12). The traffic pattern against iter-
ation number of this disjoint optimization is shown in Table II.
We observe that the system oscillates between two traffic pat-
terns, one having the lower average traveling time and the other
one with a lower electricity cost. As described in Section V-A,
this oscillation behavior is due to the lack of cooperation
between the IPSO and ITSO. We see that at iteration i = 2n,
the electricity prices are the same across the charging stations,
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Fig. 7. Comparing the traffic pattern against the total number of EVs per epoch.
(Top) Percentage of electricity consumed at each site. (Bottom) Percentage of
traffic leaving from each site.

TABLE I1
OSCILLATION OF TRAFFIC PATTERNS WITH THE GREEDY METHOD

H SO [ DO (¢ = 2n) [ DO (i =2n+1)
Davis 67.80 MWh 67.80 MWh 67.80 MWh
@$57.38/MWh | @$57.38/MWh @$58.04/MWh
Winters 12.56 MWh 7.227 MWh 15.87 MWh
@$57.38/MWh | @$57.38/MWh @$54.50/MWh
Fairfield 49.88 MWh 57.32 MWh 43.52 MWh
@$57.38/MWh | @$57.38/MWh @$66.59/MWh
Fremont 22.56 MWh 20.83 MWh 25.23 MWh
@$57.38/MWh | @$57.38/MWh @$65.09/MWh
Mitn. View 5.392 MWh 5.031 MWh 5,781 MWh
@$57.38/MWh | @$57.38/MWh @$61.73/MWh
Fr. Winters 7,533 7,534 7,936
Fr. Fremont 8,475 8,409 9,375
Fr. Mtn View 2,825 2,825 3,125
Travel time 188.36 min. 188.36 min. 188.39 min.
Objective $30,332.55 $30,364.61 $30,333.06

therefore the ITSO assigns the traffic by simply minimizing the
travel time. This decision, however, leads to an uneven distri-
bution in energy consumption across the power network R.
At iteration ¢ = 2n + 1, the IPSO lowers the electricity price
at Winters; and increases the price at Fairfield, Fremont and
Mountain View. This motivates the ITSO to re-assign the traffic
pattern.

An interesting point to note is that the disjoint optimization
may even lead to an infeasible IPSO decision when the total
number of EVs considered is large. This is an extreme case of
the example considered in Table I. In this case, the inability
of the greedy pricing method to correctly model the response
of the EV population to posted prices would result in an unsafe
increase of load at locations where the grid is congested and
hence the load needs to be shed to keep transmission lines as
well as transformers safe.

The above example demonstrates that applying myopic pric-
ing may result in an unstable system. Next, we investigate
the performance of the dual decomposition algorithm (cf.
Proposition V.1), which describes a systematic method for
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Fig. 8. (Left) Infeasibility against the iteration number. Notice that primal
infeasibility refers to the £2-norm ||(ay, wy)||2. (Right) Objective value of
dual decomposition against the iteration number.

cooperation between the IPSO and ITSO. Here, the total num-
ber of EVs is fixed at 2.5 x 10* per epoch. The dual decom-
position is initialized by setting v(?) = 57.5 and u° = 0. As
the dual decomposition algorithm is known to converge to the
social optimum, we are interested in studying its convergence
speed with the violation in infeasibility. We set the step size as
ag = 20 for all k£ and apply the algorithm on the same scenario
as before. For the constant (), u(©)) — (4%, w*)]|2 in (30),
we upper bound it by solving an MPEC using an approach
similar to [48].

We compare both infeasibility measures against the iteration
number in Fig. 8(Left). We can see that the dual decomposition
algorithm converges in approximately 100 iterations, and it
returns a solution that is approximately feasible. We observe
a O(1/Vk) decaying trend with the actual infeasibility.

Lastly, we study the effects of ex-post IPSO price adjust-
ment based on the estimated (wy,ay) in (30). The reserve
procurement problem (31) is approximated using a sample-
approximation method, where the candidate 7 points for N
are selected randomly within the bound [1,,1n; Mmax)- We
assume that the reserve capacity is purchased at a price of
$55.00 per MWh at all sites. Here, an interesting comparison
is the overall cost needed to purchase such reserve capacity and
the cost to operate the system under (the estimated) infeasibil-
ity, i.e., the dual objective value. The overall cost is shown in
Fig. 8(Right) as “Dual obj.+Reserve Cost.” We observe that
such cost is always higher than the social optimum cost due
to a possible mismatch between the electricity cost per unit in
purchasing the reserve capacity; yet the difference decreases as
the iteration number grows.

VII. CONCLUSIONS AND FUTURE WORK

The implications of large-scale integration of EVs on power
and transportation networks, leading to an interdependency
between the two infrastructures, were studied under a static
setting. We saw that a collaboration between the IPSO and the
ITSO can lead EVs towards a socially optimal traffic pattern
and energy footprint, and highlighted the adverse effects of ig-

noring the interconnection between the two infrastructures. We
further analyzed the reserve capacity requirements of operating
the grid without a direct collaboration between the IPSO and
ITSO. These results were obtained under an ideal static setting
and in the absence of retail markets. Important issues remain to
be studied in future work. For example, EV charging facilities
are expected to be privately-owned, and hence pricing decisions
would be left to profit-maximizing entities competing against
each other to attract EV drivers to their station. This would
affect the IPSO’s ability to impose taxes on many arcs in the ex-
tended transportation graph and would lower the IPSO’s ability
to maximize social welfare. The impact of hourly dynamics of
electricity prices and travel patterns is another important aspect
that requires further analysis. In this case, non-convexities of
the dynamic traffic assignment problem would extend to the
IPSO’s price design problem.

APPENDIX A
MPEC FOR FINDING (v*, *) IN (30)

To compute the bound (30), we need an upper bound on
[[(~*, #*)||2. To calculate such a bound, we use an MPEC to
enumerate all the possible EV demand valus and their corre-
sponding optimal dual variables (v*, u*)

gomax |y p)ll
VK BL B
s.t. 0<z;,<61,0<zy <41
dmin < d < dmax
min 17¢(g)
g
s.t. zy g < g™, z: —g < —g™™"

y:1T(d+u-g)=0
p:Hd+u—-g) <m

where dpin, dmax are lower/upper bounds to the electricity
demand d requested by the EVs and § > 0 is a regularization
parameter for the power generation constraints. As seen in
(17), the lower-level minimization problem finds the optimal
dispatch g and hence the optimal dual variables (v, p) for each
of the possible demand profiles iy < d < dyax.
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