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Resilient Primal–Dual Optimization Algorithms
for Distributed Resource Allocation

Berkay Turan , César A. Uribe , Hoi-To Wai , Member, IEEE, and Mahnoosh Alizadeh

Abstract—Distributed algorithms for multiagent resource
allocation can provide privacy and scalability over cen-
tralized algorithms in many cyber-physical systems. How-
ever, the distributed nature of these algorithms can
render these systems vulnerable to man-in-the-middle at-
tacks that can lead to nonconvergence and infeasibility of
resource allocation schemes. In this article, we propose
attack-resilient distributed algorithms based on primal–
dual optimization when Byzantine attackers are present in
the system. In particular, we design attack-resilient primal–
dual algorithms for static and dynamic impersonation at-
tacks by means of robust statistics. For static imperson-
ation attacks, we formulate a robustified optimization model
and show that our algorithm guarantees convergence to
a neighborhood of the optimal solution of the robustified
problem. On the other hand, a robust optimization model is
not required for the dynamic impersonation attack scenario
and we are able to design an algorithm that is shown to
converge to a near-optimal solution of the original problem.
We analyze the performances of our algorithms through
both theoretical and computational studies.

Index Terms—Cyber-physical systems, distributed algo-
rithms, gradient methods, multi-agent systems, optimiza-
tion methods, robustness.

I. INTRODUCTION

ANUMBER of multiagent optimization problems arise in a
wide range of resource allocation systems that fall under

the general umbrella of network utility maximization problems:
in the pioneering example of congestion control in data net-
works [1], [2]; in determining the optimal price of electricity
and enabling more efficient demand–supply balancing in smart

Manuscript received April 29, 2020; revised August 5, 2020; accepted
August 31, 2020. Date of publication September 17, 2020; date of
current version February 26, 2021. This work was supported in part
by UCOP under Grant LFR-18-548175, in part by the National Science
Foundation under Grant #1847096, in part by the CUHK Direct Grant
#4055113, and in part by the Yahoo! Research Faculty Engagement
Program. Recommended by Associate Editor M. V. Salapaka. (Berkay
Turan and César A. Uribe contributed equally to this work.) (Correspond-
ing author: Berkay Turan.)

Berkay Turan and Mahnoosh Alizadeh are with the Department of
Electrical and Computer Engineering, University of California–Santa
Barbara, Santa Barbara, CA 93106 USA (e-mail: bturan@ucsb.edu;
alizadeh@ucsb.edu).

César A. Uribe is with the Laboratory for Information and Deci-
sion Systems, Massachusetts Institute of Technology, Cambridge, MA
02138-1570 USA (e-mail: cauribe@mit.edu).

Hoi-To Wai is with the Department of SEEM, Chinese University of
Hong Kong, Hong Kong (e-mail: htwai@se.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCNS.2020.3024485

power distribution systems [3], [4]; in managing user trans-
mit powers and data rates in wireless cellular networks [5];
in determining optimal caching policies by content delivery
networks [6]; in optimizing power consumption in wireless sen-
sor networks with energy-restricted batteries [7], [8]; and in de-
signing congestion control systems in urban traffic networks [9].
The shared goal among the above-mentioned problems is to
minimize the sum of N user-specific cost functions, subject to
a set of coupling constraints that depend on users’ decisions.

In these resource allocation problems, the user-specific cost
functions and the set of coupling constraints are considered
private information to the users and to a central coordinator,
respectively. Consequently, it is necessary to solve these prob-
lems in a distributed fashion allowing the agents to cooperate
through communication with a central coordinator. Among oth-
ers, primal–dual optimization methods [10] have been advocated
as they naturally give rise to decomposable algorithms that favor
distributed implementation [11]. In addition to their practical
success, these methods are supported by strong theoretical guar-
antees where fast convergence to a near-optimal solution is well
established [10].

However, the distributed nature of these methods also ex-
poses the system to vulnerabilities not faced by their traditional
centralized counterpart. Many of the existing algorithms assume
the agents, and the communication channels between the central
coordinator and the agents, to be completely trustworthy. In this
article, we consider the setting where these communications
are susceptible to adversarial attacks. An attacker can take
over network subsystems, and deliberately edit the messages
communicated to the central coordinator to any arbitrary value,
i.e., a Byzantine attack. As we will demonstrate, this might result
in an unstable system with possible damage to hardware and the
overall system.

Our goal is to design attack-resilient primal–dual algorithms
in order to solve multiagent resource allocation problems in the
presence of Byzantine attackers. If a communication channel
is attacked and becomes compromised, the attacker can modify
messages and/or inject fresh messages into the network on the
agents’ behalf. We consider two scenarios with different attacker
capabilities. A static impersonation attack scenario considers the
set of agents communicating through compromised channels
to be the same for the duration of the algorithm, whereas a
dynamic impersonation attack scenario considers the case where
all agents are susceptible to attacks and, hence, communicate
through compromised channels for a limited fraction of the
algorithm’s runtime. Our main contributions are as follows.
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1) We propose resilient distributed resource allocation
algorithms under the two aforementioned attack scenarios
that rely on robust mean estimation.

2) We provide convergence guarantees of the proposed algo-
rithms. We show that our algorithm for the dynamic im-
personation attack scenario converges to the optimal so-
lution of the regularized problem, whereas our algorithm
for the static impersonation attack scenario converges
to an O(α2

1) neighborhood of the optimal solution of a
robustified and regularized optimization model, where
α1 ∈ [0, 1

2 ) is a known upper bound on the fraction of
attacked channels.

3) We provide empirical evidence that supports our theo-
retical results on convergence and preventing constraint
violation. We do so via computational simulations on
electric vehicle (EV) charging and power distribution
applications.

Related work: Vulnerabilities of various types of distributed
algorithms have been identified and addressed in a number of
recent studies. Relevant examples can be found in [12]–[20],
which study secure decentralized algorithms on a general net-
work topology but consider consensus-based optimization mod-
els. There are two fundamental differences between distributed
resource allocation and consensus problems that make these
algorithms inapplicable in our case.

1) In resource allocation problems, each agent is solving
its own optimal level of resource consumption, i.e., each
agent is solving its own parameter, whereas consensus
problems focus on all agents solving a shared (global)
parameter.

2) Unlike resilient consensus algorithms, in resource alloca-
tion problems pertaining to access critical infrastructure
systems, such as power or transportation networks, one
cannot simply block a set of users’ access to the network
even if they are deemed likely to be attackers.

A recently popular line of works in [21]–[25] focuses on
building resilient algorithms for distributed statistical learning.
A crucial difference from this work is that they assume identical
functions across the agents. In fact, we employ robust statis-
tics [26], [27] to develop our resilient algorithms, and partic-
ularly, we develop novel results for robust mean estimation, a
topic that has been recently rekindled in [28]–[30].

This article is a revised and extended version of the pre-
liminary conference report [31]. This article expands [31] into
multiple attack scenarios and includes numerical studies.

Paper Organization: The remainder of the article is organized
as follows. In Section II, we provide an overview of the basic
primal–dual algorithm for resource allocation. In Section III, we
formally define two Byzantine attack models and demonstrate
how Byzantine attacks can alter the primal–dual optimization
procedure. In Section IV, we present two attack-resilient primal–
dual algorithms corresponding to the different attack scenarios
along with their convergence analysis. In Section V, we pro-
vide numerical results for our algorithms. Finally, Section VI
concludes this article.

Notations: Unless otherwise specified, ‖ · ‖ denotes the stan-
dard Euclidean norm. For any N ∈ N, [N ] denotes the finite
set {1, . . ., N}. Given θ, θi indicates the ith block/entry of θ

Algorithm 1: PD-DRA Procedure.
1: for k = 1, 2, . . . do
2: (Communication stage):
3: 1) Central coordinator receives {θ(k)

i }Ni=1 from

agents and computes θ
(k)

:= 1
N

∑N
i=1 θ

(k)
i ,

{∇θgt(θ
(k)

)}Tt=1.
4: 2) Central coordinator broadcasts the vector

g(k) :=
∑T

t=1 λ
(k)
t ∇θgt(θ

(k)
) to agents.

5: (Computation stage):
6: 1) Agent i computes the update for θ(k+1)

i according
to (4a) using the received g(k).

7: 2) The central coordinator computes the update for
λ(k+1) according to (4b).

8: end for

that corresponds to the parameter of agent i. θi,j denotes the jth
element of vector θi.

II. OVERVIEW OF PRIMA–DUAL ALGORITHM FOR

RESOURCE ALLOCATION

We consider the following multiagent optimization problem
with an objective to minimize the average cost incurred by the
agents, subject to a set of constraints that are functions of the
average of the agents’ parameters:

min
θi∈Rd∀i

f(θ) :=
1

N

N∑
i=1

fi(θi)

subject to gt

(
1
N

∑N
i=1 θi

)
≤ 0, t = 1, . . . , T

θi ∈ Ci, i = 1, . . . , N

(1)

where fi(·) : Rd → R is the continuously differentiable and
convex cost function of agent i and gt(·) : Rd → R are a
continuously differentiable and convex set of constraints. The
parameter θi of agent i is constrained to be in a compact convex
set Ci ∈ Rd.

Running Example (Resource Allocation Problem)
Throughout the article, we use the following toy example
as a running example to clarify the concepts and the methods.
We consider an EV charging example with 5 agents. The cost
function fi(·) is monotone decreasing and is the same for
all agents. As an example, we set fi(θi) = (θi − 10)2 as the
quadratic cost function that is monotonically decreasing for
0 ≤ θi ≤ 10. There is a charging station with five EV charging
points, three of which have a maximum charging rate of 7 kW,
and two have a rate of 10 kW. The total rate at which the
charging station is able to deliver electricity is determined by
the grid, and let it be upper bounded by 25 kW (hence, the
average rate is upper bounded by 25/5 =5 kW). Accordingly,
the constraints of this system are stated as

g
(
(1/5)

∑5
i=1 θi

)
:= (1/5)

∑5
i=1 θi − 5 ≤ 0

0 ≤ θi ≤ 7, i = 1, 2, 3

0 ≤ θi ≤ 10, i = 4, 5.
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Note thatθ is a real number, hence dimensiond = 1. The optimal
solution in this example is to deliver electricity at a rate of 5 kW
to all agents due to symmetry.

The optimization problem in (1) cannot be solved centrally,
because the utility functions fi(·) are private to the agents, and
furthermore the coupling constraints on the resources are only
known by a central coordinator. Accordingly, the goal of the
primal–dual distributed resource allocation (PD-DRA) proce-
dure in Algorithm 1 is to solve (1) in a distributed manner, where
the agents observe a pricing signal received from the central
coordinator and communicate their parameters to the central
coordinator [10]. Consequent to this information exchange, the
pricing signal and the agents’ parameters are updated by the
central coordinator and by the individual agents, respectively.

In order to derive the update rules used by Algorithm 1, we
first consider the Lagrangian function of (1)

L({θi}Ni=1;λ) :=
1

N

N∑
i=1

fi(θi) +

T∑
t=1

λtgt

(
1

N

N∑
i=1

θi

)
(2)

where λt ≥ 0 is the dual variable associated with constraint gt(·)
and λ = [λ1 . . . λT ]

ᵀ ∈ RT
+ is the vector of the dual variables.

Under strong duality (e.g., when Slater’s condition holds), solv-
ing problem (1) is equivalent to solving its dual problem

max
λ∈RT

+

min
θi∈Ci∀i

L({θi}Ni=1;λ). (P)

As suggested in [10], we consider a regularized version of (P).
Let us define

Lυ({θi}Ni=1;λ)

:= L({θi}Ni=1;λ) +
υ

2N

∑N
i=1 ‖θi‖2 − υ

2 ‖λ‖2
(3)

such that Lυ(·) is υ-strongly convex and υ-strongly concave in
{θi}Ni=1 and λ, respectively.

Remark 1: Adding regularization terms is a typical technique
used in optimization, called dual smoothing [32]. We add the reg-
ularization terms for the purposes of convergence analysis used
in this article, which can be applied on strongly convex/concave
functions. Indeed, adding the regularization terms might change
the solution of the original optimization problem. However, as
explained in [33, Prop. 5.2], by an appropriate selection of the
regularization parameters, we can recover an optimality gap
guarantee for the original problem based on the solution to the
regularized problem.

We define the regularized problem as

max
λ∈RT

+

min
θi∈Ci∀i

Lυ({θi}Ni=1;λ). (Pυ).

Let γ > 0 be the step size and k ∈ Z+ be the iteration
index. The primal–dual recursion performs projected gradient
descent/ascent on the primal/dual variables as follows:

θ
(k+1)
i = PCi

(
θ
(k)
i − γ∇θi

Lυ({θ(k)
i }Ni=1;λ

(k))
)
∀i ∈ [N ]

(4a)

λ(k+1) =
[
λ(k) + γ∇λLυ({θ(k)

i }Ni=1;λ
(k))
]
+

(4b)

where PCi(·) is the Euclidean projection operator to set Ci
and [·]+ denotes the max{·, 0} operator. According to (3), the
gradients with respect to (w.r.t.) the primal and the dual variables
are given, respectively, by

∇θi
Lυ({θ(k)

i }Ni=1;λ
(k)) =

1

N

(
∇θi

fi(θ
(k)
i ) + υθ

(k)
i

+
∑T

t=1 λ
(k)
t ∇θgt(θ)

∣∣∣
θ= 1

N

∑N
i=1 θ

(k)
i

) (5a)

[
∇λLυ({θ(k)

i }Ni=1;λ
(k))
]
t
= gt

(
1
N

∑N
i=1θ

(k)
i

)
− υλ

(k)
t

(5b)

for all i, t. It is worthwhile to highlight that both gradients

depend on the average parameter θ
(k)

:= 1
N

∑N
i=1 θ

(k)
i . From

(5a) and (5b), we can determine which variables should be
communicated between the central coordinator and the agents
so that the gradients can be computed locally (see Algorithm 1).

Since the regularized primal–dual problem is strongly con-
vex/concave in primal/dual variables, Algorithm 1 converges
linearly to the optimal solution of (Pυ) [10]. To study this, let
us concatenate the primal and the dual variables and denote
z(k) := ({θ(k)

i }Ni=1,λ
(k)) as the primal–dual variable at the kth

iteration and define the mapping Φ(z(k)) as

Φ(z(k)) :=

⎛⎝ ∇θLυ({θ(k)
i }Ni=1,λ

(k))

−∇λLυ({θ(k)
i }Ni=1,λ

(k))

⎞⎠ . (6)

Proposition 1: (see[10, Th. 3.5]) Assume that the map
Φ(z(k)) is LΦ Lipschitz continuous. For all k ≥ 1, we have

‖z(k+1) − z�‖2 ≤ (1− 2γυ + γ2L2
Φ)‖z(k) − z�‖2 (7)

where z� is a saddle point to the (Pυ). Setting γ = υ/L2
Φ gives

‖z(k+1) − z�‖2 ≤ (1− υ2/L2
Φ)‖z(k) − z�‖2 ∀ k ≥ 1.

III. PROBLEM FORMULATION

Even though the PD-DRA provides strong theoretical conver-
gence guarantee, it relies on error-free communication between
the central coordinator and the agents, and is not robust to attacks
on the channels between the agents and the central coordinator,
as described below.

We study a situation when the uplink communication channels
between some of the agents and the central coordinator are
compromised.1 Let A(k) ⊂ [N ] be the set of agents commu-
nicating through compromised uplink channels at iteration k,
whose identities are unknown to the central coordinator, and
let H(k) := [N ] \ A(k) be the set of agents communicating
through trustworthy uplink channels at iteration k. Instead of

1This article studies the case where only uplink channels are compromised.
However, the case of downlink corruption can also be addressed. Since the
downlink channel is a broadcast channel, a compromised downlink channel
results in no agent receiving a trustworthy pricing signal. In that case, there
is no optimization method based solution to that problem since there is no
communication. If we assume however that all the downlink channels are
point-to-point between the central coordinator and each agent, the methods
developed in this article can be applied in a similar fashion.
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Fig. 1. Illustration of (a) static impersonation attack and (b) dynamic impersonation attack. Blue arrows represent trustworthy channels, whereas
red arrows represent compromised channels. (a) Static impersonation attack scenario, agents 4 and 5 are permanently communicating through
compromised channels. (b) Dynamic impersonation scenario, where the set of agents communicating through compromised channels is changing.

receiving θ
(k)
i from each agent i ∈ [N ] at iteration k (Algo-

rithm 1 Step 2.1), the central coordinator receives the following
messages:

r
(k)
i =

{
θ
(k)
i , if i ∈ H(k)

b
(k)
i , if i ∈ A(k).

(8)

We consider a Byzantine attack scenario, under which the
messages sent through the compromised channels, b(k)i , can be
chosen arbitrarily by an adversary. This also encompasses faulty
messages due to erroneous inputs or erroneous channels, since
we set no restrictions on b

(k)
i . The adversary’s goal is to harm

the system and cause suboptimalities. When the messages are
erroneous or chosen adversarily, the central coordinator com-
putes the gradients and therefore the pricing signal using these
erroneous messages. The agents then update their parameters
based on this erroneous pricing signal, which can lead to an
overall suboptimal resource allocation. Moreover, the choice of
the compromised channels A(k) affects the impact of the attack
and the precautions to be taken in order to defend against the
attack. As such, we study two Byzantine attack scenarios that
differ in the set of the compromised channels, as illustrated in
Fig. 1.

Running Example (Byzantine Attack) Let agent 1 be com-
municating through a compromised channel at all iterations, i.e.,
A(k) = {1} ∀k. The compromised message sent to the central
coordinator is b(k)1 = 1 kW ∀k. This means that irrespective of

θ
(k)
1 , the central coordinator receives a message indicating agent

1 is willing to charge at rate of 1 kW.

A. Attack Scenarios

1) A static impersonation attack, where an adversary takes
over a subset of uplink channels permanently and the set
of agents communicating through compromised channels

is fixed (i.e., A(k) = A∀k). Consequently, the central
coordinator is never able to communicate reliably with
agents i ∈ A. In this case, it is not feasible to optimize the
original problem (P) since the contribution from f(θi) :
i ∈ A becomes unknown to the central coordinator. Yet,
we assume that it is also not possible to deny access
to resources for agents who are suspected of potentially
being under attack. As a compromise, we formulate the
following optimization problem:

min
θi∈Ci,i∈H

f(θ) :=
1

N

∑
i∈H

fi(θi)

subject to max
θj∈Cj ,j∈A

gt

(
1
N

∑N
i=1 θi

)
≤ 0 ∀t ∈ [T ].

(9)
The objective of (9) is to minimize the cost of the agents
with trustworthy channels subject to a robust set of con-
straints that consider the worst case scenario, in which
the parameters of the agents with compromised chan-
nels are assumed to be maximizing the constraints (e.g.,
those agents are assumed to be consuming the maximum
amount of resources). It is critical to mention that during
a primal–dual algorithm scheme, the messages received
through the compromised channels can be anything. The
robust approach is to however ignore those messages and
assume that the parameters of the agents communicating
through those channels are maximizing the constraints
so that the operation of the system is feasible under any
circumstance. Our goal is to develop an attack-resilient
PD-DRA to solve the robust optimization problem (9).
Running Example (Robust Optimization Model) Since
agent 1 is sending a compromised message of 1 kW and
their true parameter can be anything, the worst case ap-
proach is to assume that they are charging at the maximum
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rate, which is 7 kW for that agent. Hence, the robust
constraint is

max
θj∈Cj ,j∈A

g

(
1

5

5∑
i=1

θi

)
= max

θj∈Cj ,j∈A
1

5

5∑
i=1

θi − 5

=
1

5

∑
i∈H

θi + max
θj∈Cj ,j∈A

1

5

∑
j∈A

θj − 5 =
4

5
θH − 3.6

where we used |H| = 4 and the notation
θH = 1

|H|
∑

i∈H θi. The robust constraint states that

4

5
θH − 3.6 ≤ 0 ⇒ θH ≤ 4.5.

The optimal solution in this case is to deliver electricity
at a rate of 4.5 kW to the trustworthy agents. Since the
compromised agent has the same cost function, their
true charging rate will also be 4.5 kW, even though the
message sent is 1 kW and the central coordinator assumes
their charging rate is 7 kW.

2) A dynamic impersonation attack, where all the agents
might be affected by the adversarial attacks but only for
a limited fraction of time and hence, the set of agents
communicating through compromised channels A(k) has
to dynamically change with iteration k. As opposed to
the static case, this scenario considers the case where the
central coordinator is able to communicate reliably with
all the agents at some iterations. Due to this distinction,
it is necessary to mention that the static attack is not a
special case of the dynamic attack and both scenarios are
distinguishable from each other. The dynamic scenario
could be applicable when agents do not have dedicated
communication channels to the central coordinator and
instead communicate over random access systems, which
are more appropriate for distributed deployments. Hence,
each user periodically accesses authenticated network
devices/subsystems that are controlled by Byzantine ad-
versaries and can alter the user’s message. Our goal is to
develop an attack-resilient PD-DRA algorithm that can
still solve the original regularized problem (Pυ) in this
environment.

B. Limitations of the Basic PD-DRA Algorithm

Applying the basic PD-DRA algorithm under a Byzantine
attack scenario can lead to undesirable outcomes. Recall that
the gradients in (5) depend on the average parameter θ

(k)
.

Under a Byzantine attack scenario, if the central coordinator

forms the naive average θ̃
(k)

= (1/N)
∑N

i=1 r
(k)
i and computes

the gradients ∇gt(θ̃
(k)

) accordingly, this may result in large

error since the deviation θ̃
(k) − (1/N)

∑N
i=1 θ

(k)
i can be large

(proportional to the maximum diameter of Cis). This in turn can
obstruct convergence and also overload the system by causing
constraint violations.

Running Example (Basic PD-DRA Failure) If the central
coordinator believes all the agents are sending trustworthy infor-
mation, then the optimal solution will occur when one agent is

Fig. 2. Illustration of basic PD-DRA algorithm failure under static im-
personation attack. (a) Agents’ parameters do not converge. (b) Ob-
jective function does not converge and moreover there is constraint
violation. We only display one constraint for brevity.

demanding 1 kW and the others are demanding 6 kW (so that the
average is 5 kW). But since the 1 kW message is compromised
and all the agents have same cost function, the compromised
agent’s true electricity demand is also at a rate of 6 kW. Hence,
the solution delivers electricity at an average rate of 6 kW, which
is infeasible.

We preview our numerical result of applying the basic PD-
DRA method under a static impersonation attack scenario for an
optimal EV charging application in Fig. 2. For constraint gt(·),
we define constraint violation as max{0, gt(θ(k)

)}. Observe
that the PD-DRA method does not provide convergence and
the first constraint is being violated. From resource allocation
perspective, this means that the agents are asking to consume
more resources than the available amount in the system, which
is infeasible. For details regarding the experimental setup, please
see Section V.

IV. RESILIENT PD-DRA ALGORITHMS

Motivated by the failure of the basic PD-DRA procedure
under Byzantine attack scenarios, resilient PD-DRA algorithms
are necessary to optimize multiagent systems in a distributed
manner when the system is susceptible to attacks. We hold
the following assumption to be true throughout the rest of the
article and propose two different attack resilient PD-DRA algo-
rithms corresponding to the different attack scenarios outlined in
Section III.

Assumption 1: For all θ ∈ Rd and for all t, the gradient of gt
is bounded with ‖∇gt(θ)‖ ≤ B and is L-Lipschitz continuous.
Moreover, since maximum resource that can be consumed by
an agent is bounded due to limited amount of resources, we let
0 ∈ Ci and upper bound the diameters of Ci by R

max
θ,θ′∈Ci

‖θ − θ′‖ ≤ R, i = 1, . . ., N. (10)

Running Example (Assumptions) The constraint in our
running example satisfies ∇g(θ) = 1, which is bounded by
B = 1 and is L = 0-Lipschitz continuous. Since the maximum
charging rate is upper bounded by 7 kW for three of the agents
and by 10 kW for two of the agents, R = 10.
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A. Static Impersonation Attack

Under this attack scenario, given the complete lack of any
credible information on the resource consumption parameters of
the agents that permanently communicate through compromised
channels, the central coordinator can only hope to solve the
robust optimization model defined in (9) instead. This formu-
lation considers a worst case scenario on how much resources
the compromised agents will consume, which ensures constraint
satisfaction in all cases. However, the constraints in (9) require
the knowledge of the setA and the sets Cj∀j ∈ A, yet the central
coordinator lacks this information.

Hence, in order to develop a robust optimization model that
can handle the worst case scenario without the knowledge of A,
we let α1 ≥ |A|/N as a known upper bound to the fraction of
agents communicating through compromised channels and as-
sumeα1 < 1/2, where less than half of the agents are communi-
cating through compromised channels.2 Let θH := 1

|H|
∑

i∈H θi

be the mean of the agent’s parameters that are sent through trust-
worthy channels. We then define the following set of constraints:

gt(θ) := gt(θ) + α1

(
RB + 1

2LR
2
)

(11)

and formulate a conservative approximation of (9).
Lemma 1: Under Assumption 1, the following problem yields

a conservative approximation of (9), i.e., its feasible set is a
subset of the feasible set of (9):

min
θi∈Ci,i∈H

1

N

∑
i∈H

fi(θi)

subject to gt
(
(1− α1)θH

) ≤ 0∀ t ∈ [T ].

(12)

The proof can be found in Appendix A, which is provided in
the online version [34]. All proofs and Appendices can be found
in the online version [34].

Remark 2: The proof of Lemma 1 is done by upper bound-
ing constraints of (9) using Assumption 1 and the fact that
α1 ≥ |A|/N . The looser these upper bounds compared to the
true values, the more conservative is (12). This approach po-
tentially leaves less resources available to the agents commu-
nicating through trustworthy channels by assuming more than
|A| number of agents having maximum possible impact on the
constraints, irrespective of their set Ci or the true value/gradient
of the constraints.

Running Example (Conservative Approximation) With
B = 1, L = 0, and R = 10, the conservative approximation of
the running example has the following constraint:

g((1− α1)θH) = g((1− α1)θH) + α1

(
RB +

1

2
LR2

)
= (1− α1)θH − 5 + 10α1.

2If more than half of the agents communicate through compromised channels,
then the adversary controls the majority and therefore the median, which will be
used to estimate the average parameter later in the article. In that case, there is
no optimization-based solution the central coordinator can implement in order
to securely run the system.

If α1 = |A|/N = 0.2, then the upper bound is the fraction of
compromised channels. In that case, the constraint is

0.8θH − 3 ≤ 0 ⇔ θH ≤ 3.75

which is more conservative compared to the constraint of the
robust optimization model (which was θH ≤ 4.5). The optimal
solution in this case is to deliver electricity at a rate of 3.75 kW
to the agents. The conservatism arises due to the difference
between agent-specific maximum charging rate 7 kW and the
absolute maximum charging rate 10 kW. Since the constraint
is linear, the gradient is constant. Hence, the smoothness and
Lipschitz bounds hold with equality without causing additional
conservatism.

If however α1 = 0.4, then the central coordinator assumes
two agents communicating through compromised channels. In
this case, the conservative approximation has the constraint as

0.6θH − 1 ≤ 0 ⇔ θH ≤ 5

3

which results in charging at an even slower rate since the central
coordinator has to be robust against two agents charging at the
maximum rate of 10 kW.

To develop an attack resilient PD-DRA algorithm, we again
define the regularized Lagrangian function of (12)

Lυ({θi}i∈H;λ;H)

:= 1
N

∑
i∈Hfi(θi) +

∑T
t=1λtgt

(
(1− α1)θH

)
+ υ

2N

∑
i∈H ‖θi‖2 − υ

2 ‖λ‖2.
(13)

The above function is (1− α1)υ-strongly convex and concave
in θ and λ, respectively (since (1− α1) ≤ |H|

N ≤ 1). Our main
task is to tackle the following modified problem of (P) under
Byzantine attack on (some of) the uplinks:

max
λ∈RT

+

min
θi∈Ci∀i∈H

Lυ({θi}i∈H;λ;H).(P′
υ)

Notice that (P′
υ) bears a similar form as (P) and thus one may

apply the PD-DRA method to the former. The gradients w.r.t.
primal/dual variables are given by

∇θi
Lυ({θ(k)

i }i∈H;λ(k);H) =
1

N

(
∇θi

fi(θ
(k)
i ) + υθ

(k)
i ,

+ (1−α1)N
|H|

∑T
t=1 λ

(k)
t ∇θgt(θ)

∣∣∣
θ=(1−α1)θ̄

(k)
H

)
∀i ∈ H

(14a)[
∇λLυ({θ(k)

i }i∈H;λ(k);H)
]
t
= gt

(
(1− α1)θ

(k)
H
)
− υλ

(k)
t .

(14b)

However, such an application requires the central coordinator to
compute the sample average

θ
(k)
H = 1

|H|
∑

i∈H θ
(k)
i (15)

at each iteration. The above might not be computationally
feasible under the attack model, since the central coordinator
is oblivious to the identity of H. As a solution, the central

coordinator computes the robust mean θ̂
(k)

H of the received
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Algorithm 2: Robust PD-DRA Algorithm.

1: Input: Each agent has initial state θ
(0)
i .

2: for k = 1, 2, . . . do
3: (At the Central Coordinator):
4: 1) Receives {r(k)i }Ni=1, see (8), from agents.

5: 2) Computes robust mean θ̂
(k)

H using the estimator
(16).

6: 3) Broadcasts the vector

ĝ
(k)
H :=

∑T
t=1 λ

(k)
t ∇θgt((1− α1)θ̂

(k)

H ) to agents.
7: 4) Computes the update for λ(k+1) with (18b).
8: (At each agent i∈ H):
9: 1) Agent receives ĝ(k)

H .

10: 2) Agent computes update for θ(k+1)
i with (18a).

11: end for

parameters {r(k)i }i∈[N ] using a median-based mean estimator
described next.

1) Overview of Median-Based Mean Estimation: Con-
sider a set of N vectors {xi ∈ Rd}Ni=1, among which at least
(1− α1)N are trustworthy (xi ∈ H) and at most α1 N are
compromised (xi ∈ A). We consider a simple median-based
estimator applied to each coordinate j = 1, . . . , d. First, define
the coordinatewise median as

[xmed]j = med
({[xi]j}Ni=1

)
where med(·) computes the median of the operand. Then, our
estimator is computed as the mean of the nearest (1− α1)N
neighbors of [xmed]j . Our estimator is

[x̂H]j = 1
(1−α1)N

∑
i∈Nj

[xi]j (16)

where we have defined the set with |Nj | = (1− α1)N as

Nj = {i ∈ [N ] :
∣∣ [xi − xmed]j

∣∣ ≤ rj}
such that rj is chosen to satisfy |Nj | = (1− α1)N .

The following bounds the performance of (16).
Proposition 2: Let xH be the mean of the trustworthy

vectors. Suppose that maxi∈H ‖xi − xH‖∞ ≤ r, then for any
α1 ∈ (0, 1

2 ), it holds that

‖x̂H − xH‖ ≤ 2α1

1− α1

⎛⎝1 +

√
(1− α1)2

1− 2α1

⎞⎠ r
√
d. (17)

The proof can be found in Appendix B of the online ver-
sion [34]. We note that for sufficiently small α1, the right-hand
side on (17) can be approximated by O(α1r

√
d). Using this

median-based mean estimator, we propose the robust PD-DRA
algorithm as follows.

2) Robust PD-DRA Algorithm: We summarize the static
impersonation attack resilient PD-DRA method in Algorithm 2.
The algorithm behaves similarly as Algorithm 1 applied to (P′

υ),
with the exception that the central coordinator is oblivious to
H, and it uses a robust mean estimator to find an approximate
average for the signals sent through the trustworthy links, as
illustrated in Fig. 3. This approximate value is used to compute

Fig. 3. Robust mean estimation under static impersonation attack.
Red/blue circles correspond to parameters received through compro-
mised/trustworthy channels, respectively. In this example, there are
N = 5 agents and agents 1 and 2 are always communicating through
compromised channels. At iteration k, the central coordinator computes

the robust mean θ̂
(k)

H of the received parameters {r(k)
i }i∈[N ].

the new price signals, and sent back to agents. In particular, the
primal–dual updates are

θ
(k+1)
i = PCi

(
θ
(k)
i − γ

N

(
ĝ
(k)
H +∇θi

fi(θ
(k)
i ) + υθ

(k)
i

))
(18a)

λ
(k+1)
t =

[
λ
(k)
t + γ

(
gt((1− α1)θ̂

(k)

H )− υλ
(k)
t

)]
+
.

(18b)

We note that the update rule in (18a) is valid for agents in set
H, because the gradients of the Lagrangian are defined only for
those agents in (14a). The agents in setAmay or may not use the
same update rule, however, this does not have any impact on the
algorithm as they can never communicate their true parameters
to the central coordinator.

Lemma 2: Algorithm 2 is a primal–dual algorithm [10] for
(P′

υ) with perturbed gradients

ĝ
(k)
θ = ∇θLυ(θ

(k);λ(k);H) + e
(k)
θ (19a)

ĝ
(k)
λ = ∇λLυ(θ

(k);λ(k);H) + e
(k)
λ (19b)

where we have used the concatenated variable asθ = ({θi}i∈H).
Under Assumption 1 and assuming that λ

(k)
t ≤ λ for all k, we

have

‖e(k)θ ‖ ≤ (1− α1)λLT‖θ̂(k)

H − θ
(k)
H ‖

+
|H| − (1− α1)N

|H| λBT
(20)

‖e(k)λ ‖ ≤ (1− α1)BT‖θ̂(k)

H − θ
(k)
H ‖. (21)

The proof can be found in Appendix C of the online ver-
sion [34]. The assumption λ

(k)
t ≤ λ can be guaranteed since

gt((1− α1)θ̂
(k)

H ) is bounded, which is proven in Appendix H of
the online version [34]. Furthermore, the performance analysis
for the median-based estimator shows that

‖θ̂(k)

H − θ
(k)
H ‖ = O(α1R

√
d) (22)
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when α1 is small. Finally, based on Lemma 2, we can analyze
the convergence of Algorithm 2. Let ẑ� = (θ̂

�
, λ̂

�
) be a saddle

point of (P′
υ) and define

Φ(z(k)) :=

(
∇θLυ({θ(k)

i }i∈H,λ(k);H)

−∇λLυ({θ(k)
i }i∈H,λ(k);H)

)
. (23)

We are ready to present our main result for static attacks.
Theorem 1: Assume the map Φ(z(k)) is LΦ-Lipschitz con-

tinuous. For Algorithm 2, for all k ≥ 0 it holds

‖z(k+1) − ẑ�‖2 ≤ (
1− γυ′ + 2γ2L2

Φ

) ‖z(k) − ẑ�‖2

+

(
4γ

υ′ + 2γ2

)
Ek

(24)

where υ′ := (1− α1)υ and Ek := ‖e(k)θ ‖2 + ‖e(k)λ ‖2 is the
total perturbation at iteration k. Moreover, if we choose γ <
υ′/2L2

Φ and Ek is upper bounded by E for all k, then

lim sup
k→∞

‖z(k) − ẑ�‖2 ≤
4
υ′ + 2γ

υ′ − 2γL2
Φ

E. (25)

The proof can be found in Appendix D of the online ver-
sion [34]. Combining with (22) shows that the resilient PD-DRA
method converges to a O(α2

1R
2 d) neighborhood of the saddle

point of (P′
υ). Moreover, it shows that the convergence rate to the

neighborhood is linear, which is similar to the classical analysis
in [10].

B. Dynamic Impersonation Attack

Under this attack scenario, the set of agents communicating
through compromised channels is dynamically changing with
iterations. We make the following assumption on how frequently
each agent’s communications are compromised.

Assumption 2: Letm be a fixed window size andα2 < 0.5 be
a known upper bound on how frequent an agent communicates
through a compromised channel. Then, for allk ≥ m− 1 and for
all agents i ∈ [N ], among the received parameters {r(k−�)

i }m−1
�=0

at most α2 m are sent through compromised channels.
It is important to recall that the dynamic attack scenario

does not generalize the static attack scenario and there is a
significant distinction between the two. The static attack sce-
nario assumes that a fixed set of agents’ communications are
permanently compromised. It may occur when the attacker
compromises set of communication channels and those chan-
nels are assigned to the agents via a static channel allocation
scheme.

On the contrary, for the dynamic attack scenario, each user’s
communications are vulnerable to attacks for at most a given
α2 fraction of iterations over a window of size m under As-
sumption 2, and hence each agent is able to communicate
reliably with the central coordinator at some iterations. This
scheme may occur when the attacker compromises a fixed set of
communication channels (same as the static scenario), however,
the channels are assigned to the agents via a dynamic channel
allocation scheme (e.g., do a round-robin channel allocation.
If there are m communication channels out of which α2 m are

Fig. 4. Robust mean estimation under dynamic impersonation attacks.
Red/blue circles correspond to parameters received through compro-
mised/trustworthy channels, respectively. In this example, there are
N = 5 agents and the set of agents communicating through compro-
mised channels is changing at every iteration. At iteration k, the central

coordinator computes the robust mean θ̂
(k)

i of the received parameters

{r(k−�)
i }m−1

�=0
for all agents i ∈ [N ]. Then, computes the naive average

of {θ̂(k)

i }Ni=1 to get the average parameter θ̂
(k)

.

compromised, assigning channels dynamically in a cyclic way to
the agents ensures that over a window of m, every agent has sent
α2 m compromised messages). Although the attacker behaves
the same way, we can simulate both scenarios by static/dynamic
channel allocation. In cyber-physical systems, such dynamic
allocation schemes are commonly used (e.g., dynamic IP as-
signment to be protected from hackers).

Interestingly, it is possible to develop an algorithm that con-
verges to the optimal solution of Problem (Pυ). The intuition
behind is that the received parameters over a long period of
time contain a fraction of trustworthy information that can be
extracted by the algorithm to perform faithful computations.

Our algorithm is similar in nature to an averaging gradient
scheme where the primal–dual updates utilize the averages of
time-delayed gradients. Furthermore, the scheme is combined
with the robust mean estimator developed in Section IV-A1
to approximate the averages of outdated gradients, as illus-
trated in Fig. 4. Specifically, the central coordinator chooses
a window size of m. For any iteration k ≥ m− 1, instead of

using r
(k)
i for computing the average parameter θ

(k)
and the

gradients, the central coordinator computes the robust mean θ̂
(k)

i

from the received parameters {r(k−�)
i }m−1

�=0 using the median-
based mean estimator (16) for all agents i ∈ [N ], applied on
the sequence of historical received parameters. Note that we
have replaced α1 by α2, N by m in this application. It then

uses θ̂
(k)

:= 1
N

∑N
i=1 θ̂

(k)

i for computation of the primal–dual
updates.

We summarize our robust averaging PD-DRA method in
Algorithm 3. The primal–dual updates are described by

θ
(k+1)
i = PCis

(
θ
(k)
i − γ

N

(
ĝ(k) +∇θifi(θ

(k)
i ) + υθ

(k)
i

))
(26a)

λ
(k+1)
t =

[
λ
(k)
t + γ(gt(θ̂

(k))− υλ
(k)
t )
]
+
. (26b)
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Algorithm 3: Averaging PD-DRA Algorithm.

1: Input: Each agent has initial state θ
(0)
i .

2: for k = 0, 1, . . . ,m− 2 do
3: Apply basic PD-DRA (Run Algorithm 1).
4: end for
5: for k = m− 1,m, . . . do
6: (At the Central Coordinator):
7: 1) Receives {r(k)i }Ni=1, see (8), from agents.
8: 2) For all agents i = 1, . . . , N , computes robust

mean θ̂
(k)

i of {r(k−�)
i }m−1

�=0 using the estimator (16)
with parameters α1 → α2, N → m.

9: 3) Computes θ̂
(k)

:= 1
N

∑N
i=1 θ̂

(k)

i .
10: 4) Broadcasts the vector

ĝ(k) :=
∑T

t=1 λ
(k)
t ∇θgt(θ̂

(k)
) to agents.

11: 5) Computes the update for λ(k+1) with (26b).
12: (At each agent i):
13: 1) Agent receives ĝ(k).
14: 2) Agent computes update for θ(k+1)

i with (26a).
15: end for

Lemma 3: Algorithm 3 is a primal–dual algorithm for (Pυ)
with perturbed gradients

ĝ
(k)
θ = ∇θLυ(θ

(k);λ(k)) + e
(k)
θ (27a)

ĝ
(k)
λ = ∇λLυ(θ

(k);λ(k)) + e
(k)
λ (27b)

where we have used concatenated variable as θ = ({θi}i∈N ).
Under Assumption 1 and assuming that λ

(k)
t ≤ λ for all k, we

have

‖e(k)θ ‖ ≤ λLT

N

N∑
i=1

‖θ(k)
i − θ̂

(k)
i ‖ (28a)

‖e(k)λ ‖ ≤ BT

N

N∑
i=1

‖θ(k)
i − θ̂

(k)
i ‖. (28b)

The proof can be found in Appendix E of the online ver-
sion [34]. The assumption λ

(k)
t ≤ λ can be guaranteed since

gt(θ̂
(k)

) is bounded, which is proven in Appendix H of the online
version [34]. Let z(k) := ({θ(k)

i }Ni=1,λ
(k)) be the primal–dual

variable at the kth iteration and define the mapping Φ(z(k))
as in (6). We observe that the algorithm’s behavior is similar
to the incremental aggregated gradient method in [35]–[37].
The following lemma, which is inspired by [35]–[37], upper
bounds the perturbation in the gradients in (28) by the maximum
optimality gap in a finite window of size 2m− 1.

Lemma 4: Assume the mapΦ(z(k)) isLΦ-Lipschitz continu-
ous. Let Ek := ‖e(k)θ ‖2 + ‖e(k)λ ‖2. Then, for all k ≥ 2(m− 1),
we have

Ek ≤ γ2C max
0≤�≤2(m−1)

‖z(k−�) − z�‖2 (29)

where

C =

(
T 2(λ

2
L2 +B2)

N

)
×
(

1

LΦ
+ (1 +

√
d)λLT

)2

×
(
1 + Cα

1− α2
+ Cα

)2

× (m− 1)2

(30)
and

Cα =
2α2

1− α2

⎛⎝1 +

√
(1− α2)2

1− 2α2

⎞⎠√
d.

The proof can be found in Appendix F of the online ver-
sion [34]. Using on Lemmas 3 and 4, we can analyze the
converge of Algorithm 3.

Theorem 2: Assume the map Φ(z(k)) is LΦ-Lipschitz con-
tinuous. For Algorithm 3, for all k ≥ 2(m− 1) it holds that

‖z(k+1) − z�‖2 ≤ (1− γυ + 2γ2L2
Φ)‖z(k) − z�‖2

+

(
4γ

υ
+ 2γ2

)
γ2C max

0≤�≤2(m−1)
‖z(k−�) − z�‖2.

(31)

Moreover, if we choose γ sufficiently small such that it satisfies

υ − 2γL2
Φ − 4Cγ2

υ
− 2Cγ3 > 0

then

‖z(k) − z�‖2 ≤ ρk−2(m−1)‖z(2(m−1)) − z�‖2 (32)

and

lim
k→∞

‖z(k) − z�‖2 = 0 (33)

where ρ = (1− γυ + 2γ2L2
Φ + 4Cγ3

υ + 2Cγ4)
1

1+2(m−1) .
The proof can be found in Appendix G of the online ver-

sion [34]. Theorem 2 shows that the robust averaging PD-DRA
method converges geometrically to the optimal solution of (Pυ)
under said assumptions.

C. Remarks

A few remarks highlighting design criteria to be explored in
practical implementations are in the following order.

1) Theorem 1 illustrates a tradeoff in the choice of the
step size γ between convergence speed and accuracy.
In particular, (24) shows that the rate of convergence
factor 1− γυ + 2γ2L2

Φ can be minimized by setting
γ = υ/(4L2

Φ). Meanwhile, the asymptotic upper bound
in (25) is increasing with γ and it can be minimized by
setting γ → 0.

2) Theorem 2 illustrates a tradeoff between the window
size m and the convergence rate. Observe that increasing
the window size m decreases the rate of convergence
by increasing ρ [(30) and (32)]. On the other hand, the
likelihood that Assumption 2 holds true in a stochastic
setting (e.g., channels being compromised with some
probability) increases with a larger window size m.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 07,2021 at 18:46:03 UTC from IEEE Xplore.  Restrictions apply. 



TURAN et al.: RESILIENT PRIMAL–DUAL OPTIMIZATION ALGORITHMS 291

3) Under the dynamic impersonation attack scenario, the
choice of α2 does not affect convergence accuracy to the
saddle point of (Pυ), but only changes the convergence
rate. As such, choosing the largest α2 such that α2m =
�m−1

2 � (i.e., assuming maximum possible number of
iterates received through compromised channels) makes
the algorithm robustly applicable to all dynamic imper-
sonation attack scenarios regardless of the frequency of
the attack.

4) In case the central coordinator cannot identify the attack
scenario as static or dynamic impersonation (or the attack
can be a mixture of both), a mixture of both Algorithms 2
and 3 can be applied. In particular, this can be done
by adding Step 6.2 of Algorithm 3 before Step 2 of
Algorithm 2, and applying the rest of Algorithm 2 as it is.
The central coordinator first computes robust parameters

θ̂
(k)

i by computing the robust mean of {r(k−�)
i }m−1

�=0 for all

agents, and then computes the robust mean of {θ̂(k)

i }Ni=1.
This effectively makes Algorithm 2 robust to possible
dynamic impersonation attacks on uplink channels that
are thought to be trustworthy for all iterations.

V. NUMERICAL STUDY

In this section, we demonstrate the performance of our meth-
ods and verify our theoretical claims by applying our algorithms
for the following:

1) an EV charging coordinator under static impersonation
attack;

2) an EV charging coordinator under dynamic imperson-
ation attack;

3) a power distribution network with flexible demand under
dynamic impersonation attack.

The EV charging coordinator problem resembles classic net-
work utility maximization problems such as those studied in
communication networks, whereas the power distribution net-
work problem has more nuisances that we will discuss next.
To solve the convex optimization problems in order to get the
optimal solutions, we used CVX, a package for specifying and
solving convex programs [38].

A. EV Charging Facility

In this study, the aim is to optimize EV charging demand
over time. We consider multiple EVs receiving charge under the
same local feeder/transformer. Each agent (or EV owner) has a
different utility of charging at different times. Hence, at a given
time period, it is desired to charge those EVs who have a higher
utility (or less cost) for that time period. This problem falls into
the broad category of network utility maximization problems,
which can be formulated as

min
θi∈Rd

+∀i
f(θ) =

1

N

N∑
i=1

fi(θi) (34a)

subject to
1

N

N∑
i=1

θi � e (34b)

θmin
i � θi � θmax

i ∀i (34c)

Θmin
i ≤ 1Tθi ≤ Θmax

i ∀i (34d)

where N × e ∈ Rd is the vector of maximum available trans-
former capacity in all time periods and � denotes componen-
twise inequality between the vectors. The available capacity
changes with time of day as exogenous load on the transformer
varies with time as well. The elements {θi,j}dj=1 of the vector
θi correspond to the electricity demand of the EV i at time
slots j = 1 . . . d. Constraint (34c) restricts the amount an EV
can charge at each time slot, whereas constraint (34d) bounds
the total amount an EV can charge. For this study, we set the
cost function to be

fi(θ) = −
d∑

j=1

βi,j log θi,j (35)

where βi,j are generated randomly from a uniform distribution
in [0, 1]. We study this problem under both attack scenarios for
N = 100 EVs.

1) Static Impersonation Attack: We simulated various
static impersonation attack scenarios and ran Algorithm 2. The
results are displayed in Fig. 5.

In Fig. 5(a), we plot agent 70’s electricity demand for some
time periods, with |A|/N = 0.2 and α1 = 0.3. Each different
color corresponds to a different dimension of the parameter
vector (i.e., electricity demand for different time periods). A
colored solid line corresponds to a dimension of the parameter
vector iterates generated by the algorithm. A dashed line with
the same marker and color as a solid line is the optimal value
corresponding to that dimension of the parameter vector, which
is the solution of the regularized robust optimization problem
[formulated as (P′

υ)] of (34). Observe that Algorithm 2 suc-
cessfully provides convergence to a close neighborhood of the
optimal solution of the regularized robust optimization problem.
Furthermore, in Fig. 5(b), we show that the objective function
value converges, as opposed to a nonresilient PD-DRA method
that is shown to oscillate and violate the constraint in Fig. 2. Our
robust optimization model on the other hand ensures there is no
constraint violation.

In Fig. 5(c), we plot the mean squared error (MSE) in primal
variables θi for different number of compromised channels |A|
and different choices ofα1, which is the upper bound on fraction
of compromised links known by the central coordinator. The
MSE is calculated by

MSE = lim
k→∞

1

|H|
∑
i∈H

‖θ(k)
i − θ̂

�

i ‖2 (36)

where θ̂
�

i is the solution to (P′
υ) with α1 = |A|/N , i.e., the

solution to the regularized and robustified problem with the
knowledge of the compromised channels. Naturally, the looser
the upper bound, the larger the error, since it increases the amount
of conservatism. Hence, having an accurate upper bound on
fraction of compromised channels significantly improves the
performance.
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Fig. 5. Numerical study results for optimal EV charging under static impersonation attack. (a) Optimal parameter of agent 70 converges to a
neighborhood of the optimal solution of the robust optimization problem for |A|/N = 0.2 and α1 = 0.3. (b) Algorithm provides convergence of
the objective function value. (c) MSE for different number of compromised channels and different choices of upper bound α1. (d) MSE when
α1 = |A|/N .

Fig. 6. Numerical study results demonstrating convergence of Algo-
rithm 3 for optimal EV charging under two dynamic impersonation at-
tack scenarios: (a) p = 0.1, m = 20, α2 = 0.45; (b) p = 0.2, m = 100,
α2 = 0.49. Observe that the number of iterations it takes to converge for
(b) is much larger than for (a).

Finally, in Fig. 5(d), we exhibit the efficacy of our approach
with median-based mean estimation. We plot the mse in primal
variables, when the upper bound onα1 is tight, i.e.,α1 = |A|/N .
The error tends to increase with |A|/N , however, considering
the magnitude, the error is negligible and we can conclude that
the median-based mean estimator performs well.

2) Dynamic Impersonation Attack: We simulated a dy-
namic impersonation attack scenario and ran Algorithm 3. To
simulate a dynamic impersonation attack, we assigned a prob-
ability p for an uplink to be compromised at each iteration.3

For p = 0.1, we picked a window size m = 20 and α2 = 0.45,
whereas for p = 0.2, we picked a window size m = 100 and
α2 = 0.49. The results are displayed in Fig. 6. Each different
color corresponds to a different dimension of the parameter
vector. A colored solid line corresponds to a dimension of
the parameter vector iterates generated by the algorithm. A
dashed line with the same color as a solid line is the optimal
value corresponding to that dimension of the parameter vector,

3Although a probabilistic scenario does not guarantee that Assumption 2
holds, with sufficiently large window size m and α2, it holds with high proba-
bility at each iteration. Even though we do not study this scenario theoretically,
our algorithm still performs well.

Fig. 7. IEEE 9 bus system with three generators (supplies) repre-
sented by sources and eight loads (demands) represented by arrows.

which is the solution of the regularized optimization problem
[formulated as (Pυ)] of (34).

In both scenarios, Algorithm 3 successfully provides con-
vergence to the optimal solution of the regularized problem.
Observe that for p = 0.2, we chose a larger window size and a
larger α2 in order to meet Assumption 2. However, this restricts
us to choose a smaller step size γ as dictated by Theorem 2
and in turn slower convergence. This highlights an important
tradeoff between robustness and convergence rate, where a larger
window size m and larger α2 makes the algorithm more robust
while decreasing the convergence rate.

B. Power Distribution Network

We consider the IEEE N = 9 bus system with Ng = 3 gener-
ators and N� = 8 loads, as shown in Fig. 7. The power network
cost minimization problem can be stated as

min
di,gi∈R+

f(d, g) = −
N�∑
i=1

Ui(di) +

Ng∑
i=1

Ci(gi) (37a)

subject to 1T (d− g) = 0 (37b)

H(d− g) ≤ c (37c)

where d = [d1 . . . dN ]T and g = [g1 . . . gN ]T are the vectors
of load and generation at each node, respectively (di = 0 for
nodes without load and gj = 0 for nodes without generators).
The first constraint (37b) ensures the power supply is equal to
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Fig. 8. Numerical study results for power network under dynamic
impersonation attack: (a)/(b) displaying convergence of the de-
mand/supply, respectively.

the demand, and the second constraint (37c) is the power flow
constraint limiting the power flow on each branch.

Observe that the formulation in (37) does not directly match
with our general formulation in (1) mainly due to the presence of
equality constraint (37b), which prevents the application of the
robustified formulation in (9) and hence the robust PD-DRA
algorithm for static impersonation attacks. Nevertheless, our
algorithm for dynamic impersonation attacks can still be applied
since it does not require any robustified constraints (which
cannot be done for equality constraints).

We have chosen the utility function for load i to be Ui(di) =
βi log di and randomly generated βi from a uniform distribution
in [500, 1000]. For generators, we set the cost functionCi(gi) =
ecigi , where c1 = 0.01, c2 = 0.011, c3 = 0.012. We obtained
the power transfer distribution factor matrix H and the vector
of flow limits c from MATPOWER [39]. To simulate a dynamic
impersonation attack scenario, we assigned a probability p for an
uplink to be compromised at each iteration. We ran Algorithm 3
for p = 0.15, m = 75, and α2 = 0.49.

The results are shown in Fig. 8. In Fig. 8(a) and (b), each
different color corresponds to a different agent. A colored solid
line corresponds to an agent’s parameter iterates generated by
the algorithm. A dashed line with the same color as a solid line is
the optimal value of that agent’s parameter, which is the solution
of the regularized optimization problem [formulated as (Pυ)]
of (37). Our algorithm successfully generates sequences that

convergence to the optimal solution of the regularized problem
for both power supplying and power demanding agents.

VI. CONCLUSION

In this article, we studied two strategies for establishing
primal–dual algorithms for resource allocation in the presence
of Byzantine attackers. Specifically, we considered static and
dynamic impersonation attack scenarios and proposed an attack-
resilient primal–dual algorithm for each scenario based on ro-
bust mean estimation techniques. We derived bounds for the
performance (in terms of distance to optimality) of the proposed
algorithms and show that our algorithm for static impersonation
attack converges to a neighborhood of the optimal solution
of the regularized and robustified resource allocation prob-
lem, whereas our algorithm for dynamic impersonation attack
converges to the optimal solution of the original regularized
problem. We verify our theoretical results via computational
simulations for network utility maximization problems involv-
ing optimal distributed resource allocation, such as power dis-
tribution networks.
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