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Abstract. It is well-known that machine learning models are vulnerable to small but cleverly-4
designed adversarial perturbations that can cause misclassification. While there has been major5
progress in designing attacks and defenses for various adversarial settings, many fundamental and6
theoretical problems are yet to be resolved. In this paper, we consider classification in the presence7
of `0-bounded adversarial perturbations, a.k.a. sparse attacks. This setting is significantly different8
from other `p-adversarial settings, with p ≥ 1, as the `0-ball is non-convex and highly non-smooth.9
Under the assumption that data is distributed according to the Gaussian mixture model, our goal10
is to characterize the optimal robust classifier and the corresponding robust classification error as11
well as a variety of trade-offs between robustness, accuracy, and the adversary’s budget. To this end,12
we develop a novel classification algorithm called FilTrun that has two main modules: Filtration13
and Truncation. The key idea of our method is to first filter out the non-robust coordinates of the14
input and then apply a carefully-designed truncated inner product for classification. By analyzing15
the performance of FilTrun, we derive an upper bound on the optimal robust classification error.16
We further find a lower bound by designing a specific adversarial strategy that enables us to derive17
the corresponding robust classifier and its achieved error. For the case that the covariance matrix of18
the Gaussian mixtures is diagonal, we show that as the input’s dimension gets large, the upper and19
lower bounds converge; i.e. we characterize the asymptotically-optimal robust classifier. Throughout,20
we discuss several examples that illustrate interesting behaviors such as the existence of a phase21
transition for adversary’s budget determining whether the effect of adversarial perturbation can be22
fully neutralized or not.23

1. Introduction. Machine learning has been widely used in a variety of appli-24

cations including image recognition, virtual assistants, autonomous driving, many of25

which are safety-critical. Adversarial attacks to machine learning models in the form26

of a small perturbation added to the input have been shown to be effective in causing27

classification errors [4, 33, 10, 5, 17]. Formally, the adversary aims to perturb the28

data in a small `p-neighborhood so that the perturbed data is “close” to the original29

data (e.g. imperceptible perturbation in the case of an image) and misclassification30

occurs. There have been a variety of attacks and defenses proposed in the literature31

which mostly focus on `2 or `∞ bounded perturbations [2, 19, 35]. The state-of-the-art32

empirical defense against adversarial attacks is iterative training with adversarial ex-33

amples [18]. While adversarial training can improve robustness, it is shown that there34

is a fundamental tradeoff between robustness and test accuracy, and such defenses35

typically lack good generalization performance [34, 32, 26, 1, 36, 13].36

The focus of this paper is different from such prior work as we consider the problem37

of robust classification under `0-bounded attacks. In this setting, given a pre-specified38

budget k, the adversary can choose up to k coordinates and arbitrarily change the39

value of the input at those coordinates. In other words, the adversary can change the40

input within the so-called `0-ball of radius k. In contrast with `p-balls (p ≥ 1), the41

`0-ball is non-convex and highly non-smooth. Moreover, the `0 ball contains inherent42

discrete (combinatorial) structures that can be exploited by both the learner and the43

adversary. As a result, the `0-adversarial setting bears several fundamental challenges44

that are absent in other adversarial settings commonly studied in the literature and45
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most techniques from prior work do not readily apply in the `0 setting. Complicating46

matters further, it can be shown that any piece-wise linear classifier, e.g. a feed-47

forward deep neural network with ReLu activations, completely fails in the `0 setting48

[31]. These all point to the fact that new methodologies are required in the `0 setting.49

The `0-adversarial setting involves sparse attacks that perturb only a small por-50

tion of the input signal. This has a variety of applications including natural language51

processing [14], malware detection [11], and physical attacks in object detection [16].52

Prior work on `0 adversarial attacks can be divided into two categories of white-53

box attacks that are gradient-based, e.g. [5, 22, 21], and black-box attacks based on54

zeroth-order optimization, e.g. [29, 7]. Defense strategies against `0-bounded attacks55

have also been proposed, e.g. defenses based on randomized ablation [15] and de-56

fensive distillation [23]. Moreover, [31] develops a simple mathematical framework to57

show the existence of targeted adversarial examples with `0-bounded perturbation in58

arbitrarily deep neural networks.59

Despite this interesting recent progress and practical relevance, many fundamen-60

tal theoretical questions in the `0-setting have so far been unanswered: What are the61

key properties of a robust classifier (recall that all piece-wise linear classifiers fail)?62

What is the optimal robust classifier in standard theoretical settings such the Gauss-63

ian mixture model for data? Is there a trade-off between robustness and accuracy?64

How does the (optimal) robust classification error behave as the adversary’s budget k65

increases? Are there any phase transitions?66

We consider the problem of classification with `0-adversarially perturbed inputs67

under the assumption that data is distributed according to the Gaussian mixture68

model. We formally introduce this setting in Section 2, and address the questions69

above in the proceeding sections. In particular, instead of searching for the exact70

form of the optimal robust classifier (which is intractable), we follow a design-based71

approach: We introduce a novel algorithm for classification as well as strategies for72

the adversary. We then precisely characterize the error performance of these method-73

ologies, and consequently, analyse the optimal robust classification error, tradeoffs be-74

tween robustness and accuracy, phase transitions, etc. We envision that our proposed75

classification method introduces important modules and insights that are necessary to76

obtain robustness against `0-adversaries for general data distributions (and practical77

datasets), going beyond the theoretical setting of this paper.78

Summary of Contributions. The main contributions of this paper are as follows:79

• We propose a new robust classification algorithm called FilTrun that is based80

on two main modules: Filtration and Truncation (See Section 3.1.1 and Al-81

gorithm 3.1 therein). The filtration module removes the non-robust coordi-82

nates (features) from the input by zeroing out their values. The result is then83

passed through the truncation module which returns a label by computing84

a truncated inner product with a weight vector whose weights are optimized85

according to the distribution of un-filtered (surviving) coordinates. The trun-86

cation module is inspired by tools from robust statistics and guarantees that87

major outlier values in the input vector, which are possibly caused by the88

adversary, do not pass to affect the final decision. We highlight that the89

proposed classifier is highly nonlinear. This is consistent with the simple90

observation that any linear classifier fails to be robust in the presence of `091

attacks.92

• We analytically derive the robust classification error of the proposed clas-93

sifier. This in particular serves as an upper bound on the optimal robust94
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classification error (See Theorem 3.2 and Corollary 3.5).95

• We introduce adversarial strategies which, given sufficient budget, perturb96

the input in a way that the information about the true label is totally erased97

within the adversarially modified coordinates. The key idea is to pick a98

subset of the coordinates and to modify their distribution so that they become99

independent from the true label. This leads to a lower bound for the optimal100

robust error. (See Theorems 3.8 and 3.11).101

• In the case of having a diagonal covariance matrix for the Gaussian mixtures,102

we prove that our proposed algorithm FilTrun is indeed asymptotically-103

optimal, i.e. as the input dimension d approaches infinity, the upper and104

lower bounds converge to the same analytical expression (See Theorems 3.13105

in Section 3.3.2). To the best of our knowledge, this is the first result that106

establishes optimality for the robust classification error of any mathematical107

model with `0 attack.108

• We discuss our results through several example scenarios. In certain scenarios,109

a phase transition is observed in the sense that for a threshold α0, when the110

adversary’s budget is asymptotically below dα0 , its effect can be completely111

neutralized, while if the adversary’s budget is above dα0 , no classifier can112

do better than a naive classifier. In some other scenarios, no sharp phase113

transition is existent, leading to a trade-off between robustness and accuracy.114

2. Problem Formulation. We consider the binary Gaussian mixture model
where the distribution for the data generation is specified by the label being y ∼
Unif{±1} and x ∼ N (yµ,Σ), i.e. the Gaussian distribution with mean yµ and
covariance matrix Σ, where µ ∈ Rd and Σ is positive definite. Hereafter, we denote
this distribution by (x, y) ∼ D and refer to y as the label and to x as the input.
Our results correspond to arbitrary choices of µ and Σ, however, we consider as
running example an important special case in which Σ is a diagonal matrix, i.e. the
coordinates of x are independent conditioned on y. Focusing on classification, we
consider functions of the form C : Rd → {−1, 1} that predict the label from the input.
As a metric for the discrepancy between the prediction of the classifier on the input
x and the true label y, we consider the 0-1 loss `(C;x, y) = 1 [C(x) 6= y] . We consider
classification in the presence of an adversary that perturbs the input x within the
`0-ball of radius k:

B0(x, k) := {x′ ∈ Rd : ‖x− x′‖0 ≤ k},

where for x = (x1, · · · , xd) we define ‖x‖0 :=
∑d
i=1 1 [xi 6= 0]. In other words, the115

adversary can arbitrarily modify at most k coordinates of x to obtain x′, and feed the116

new vector x′ to the classifier. We call k the budget of the adversary. In this setting,117

the robust classification error of a classifier C is defined to be the following:118

(2.1) Lµ,Σ(C, k) := E(x,y)∼D

[
max

x′∈B0(x,k)
`(C;x′, y)

]
.119

We aim to design classfiers with minimum robust classification error. Hence, we define120

the optimal robust classification error by minimizing (2.1) over all possible classifiers:121

(2.2) L∗µ,Σ(k) := inf
C
Lµ,Σ(C, k).122

Our goal in this paper is to precisely characterize L∗µ,Σ(k) parameterized by Σ,µ and123

in different regimes of the adversary’s budget k.124
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It is well known that in the absence of the adversary, i.e. when k = 0, the Bayes125

optimal classifier is the linear classifier C(x) = sgn
(
〈Σ−1µ,x〉

)
which achieves the126

optimal standard error of Φ̄(‖ν‖2) where ν := Σ−1/2µ and Φ̄(x) := 1−Φ(x) denotes127

the complementary CDF of a standard normal distribution. In order to fix the base-128

line, specifically to have a meaningful asymptotic discussion, we may assume without129

loss of generality that130

(2.3) ‖ν‖2 = ‖Σ−1/2µ‖2 = 1.131

Hence, the optimal standard error, which is a lower bound for (2.2), becomes Φ̄(1).132

To highlight some of the main challenges of the `0-adversarial setting, we note133

that linear classifiers in general have been very successful in the Gaussian mixture134

setting. Apart from the fact that the Bayes-optimal classier is linear (when there is135

no adversary), even when the adversarial corruptions are chosen in a `p-ball for p ≥ 1136

it can be shown that the optimal robust classifiers in many cases are also linear (see137

[3, 9]). In contrast, in the presence of `0-adversaries, it is not hard to show that any138

linear classifier completely fail. More precisely, when C is linear and k ≥ 1, we have139

Lµ,Σ(C, k) = 1
2 . Such failure of linear classifiers showcases, on the one hand, how140

powerful the adversary is, and on the other hand, the necessity of new methodologies141

in designing robust classifiers.142

Further Related Work. For `p adversaries, p ≥ 1, Gaussian mixture models have143

been the main setting used in prior work to investigate optimal rules, trade-offs, and144

various other phenomena for robust classification; See e.g. [28, 3, 9, 12, 27, 8, 25, 6,145

20, 24]. Further, [30] considers data to be uniformly distributed on the sphere or cube146

and shows the inevitability of adversarial examples in `p-settings, p ≥ 0. In contrast,147

to the best of our knowledge, our work provides the first comprehensive study on the148

`0-adversarial setting using the Gaussian mixture model.149

Notation. Given two vectors x,y ∈ Rd, x�y ∈ Rd denotes the elementwise product150

of x and y, i.e. (x1y1, . . . , xdyd). Moreover, sort(x) denotes the vector containing the151

elements in x in descending order. For a ∈ R, sgn(a) returns the sign of a. We use152

[d] to denote the set {1, . . . , d} and [i : j] denotes the set {i, i + 1, . . . , j}. Given a153

vector x ∈ Rd and a subset A ⊆ [d], xA = (xa : a ∈ A) ∈ R|A| denotes the subvector154

of x consisting of the coordinates in A. Given a matrix Σ, its diagonal part, denoted155

by Σ̃, has the same diagonal entries as Σ and its other entries are 0. Given a matrix156

A ∈ Rd×d, ‖A‖∞ denotes the operator norm of A induced by the vector `∞ norm, i.e.157

‖A‖∞ := supx 6=0 ‖Ax‖∞/‖x‖∞ = max1≤i≤d
∑d
j=1 |Ai,j |.158

3. Main Results. In this section, we state our main results that include (i) the159

proposed algorithm and its performance analysis that serves as an upper bound on160

the optimal robust classification error (Section 3.1), (ii) lower bound on the optimal161

robust classification error (Section 3.2), and (iii) discussion on the optimality of the162

proposed algorithm (Section 3.3). Throughout, we illustrate our theoretical results163

and their ramifications via several examples.164

3.1. Upper Bound on the Optimal Robust Classification Error: Algo-165

rithm Description and Theoretical Guarantees. In Section 3.1.1, we introduce166

FilTrun, our proposed robust classification algorithm, and in Section 3.1.2, we ana-167

lyze its performance.168

3.1.1. Algorithm Description. We describe our proposed algorithm FilTrun,169

a robust classifier which is based on two main modules: Truncation and Filtration. We170
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Fig. 1: Schematic of FilTrun.

first introduce each of these modules and then proceed with describing the classifier.171

Truncation. Given vectors w,x ∈ Rd and an integer 0 ≤ k < d/2, we define the172

k–truncated inner product of w and x as the summation of the element-wise product173

of w and x after removing the top and bottom k elements, and denote it by 〈w,x〉k.174

More precisely, let z := w � x ∈ Rd be the element-wise product of w and x and175

let s = (s1, · · · , sd) = sort(z) be obtained by sorting coordinates of z in descending176

order. We then define177

(3.1) 〈w,x〉k :=

d−k∑
i=k+1

si.178

Note that when k = 0, this reduces to the normal inner product 〈w,x〉. Trunca-179

tion is a natural method to remove “outliers” which might exist in the data due to180

an adversary modifying some coordinates. Therefore, we expect the truncated inner181

product to be robust against `0 perturbations. The following lemma formalizes this.182

The proof of Lemma 3.1 is given in Appendix A.183

Lemma 3.1. Given x,x′,w ∈ Rd, for integer k satisfying ‖x − x′‖0 ≤ k < d/2,184

we have185

|〈w,x′〉k − 〈w,x〉| ≤ 8k‖w � x‖∞.186

In the context of our problem, this lemma suggests that if the budget of the187

adversary is at most k, we can bound the difference between the k–truncated inner188

product between w and the adversarially modified sample x′ and the (non-truncated)189

inner product between w and the original sample x. Recall that in the absence of190

the adversary, the optimal Bayes classifier is a linear classifier of the form sgn(〈w,x〉)191

with w = Σ−1µ. Hence, motivated by Lemma 3.1, one can argue that sgn(〈w,x′〉k)192

would be robust against `0 adversarial attacks with budget at most k assuming we193

can appropriately control the bound of Lemma 3.1. However, this is not enough–it194

turns out that in certain cases, we need to filter out some of the input coordinates195

and perform the truncation on the remaining coordinates, which we call the surviving196

coordinates.197

Filtration refers to discarding some of the coordinates of the input. Intuitively,198

these coordinates are the non-robust features which do more harm than good when199

the input is adversarially corrupted. More precisely, given a fixed and nonempty200

subset of coordinates F ⊆ [d], we define the classifier C(k)
F as follows:201
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(3.2) C(k)
F (x′) := sgn

(
〈w(F ),x′F 〉k

)
,202

where203

w(F ) := Σ−1
F µF ,204

and205

(3.3) ΣF = E(x,y)∼D
[
(xF − µF )(xF − µF )T |y = 1

]
206

is the covariance matrix of xF conditioned on y, which is essentially the submatrix of207

Σ corresponding to the elements in F . Note that w(F ) is the optimal Bayes classifier208

of y given xF in the absence of the adversary. It is easy to see that when Σ is diagonal,209

w(F ) = wF , but this might not hold in general.210

Algorithm 3.1 and Figure 1 illustrate the classification procedure FilTrun given211

in (3.2). So far we have not explained how the set F is chosen and the algorithm212

works with any such set given as an input. Later we discuss how the set F is chosen213

(see Remarks 3.4 and 3.15).214

Algorithm 3.1 FilTrun

Input:
k: adversary’s `0 budget
µ,Σ: parameters of the Gaussian distribution
F : the set of surviving coordinates
x′: the corrupted input

Output:

C(k)
F (x′)

1: function FilTrun(k,µ,Σ, F,x′)
2: Filtering: Construct µF ,ΣF and x′F corresponding to the coordinates in F
3: Compute w(F )← Σ−1

F µF
4: Truncation: Compute 〈w(F ),x′F 〉k
5: Return sgn (〈w(F ),x′F 〉k)
6: end function

3.1.2. Upper bound on the robust classification error of FilTrun. The-215

orem 3.2 below states an upper bound for the robust error associated with the clas-216

sification algorithm FilTrun introduced in Section 3.1.1. In particular, this yields an217

upper bound on the optimal robust classification error. The proof of Theorem 3.2 is218

given in Appendix B.219

Theorem 3.2. Assume that µ,Σ are given such that (2.3) holds. For a given220

nonempty F ⊆ [d] and 0 ≤ k < d/2, we have221

(3.4)

Lµ,Σ(C(k)
F , k) ≤ 1√

2 log d
+ Φ̄

(
‖ν(F )‖2 −

16k
√

2 log d‖Σ̃1/2
F Σ

−1/2
F ‖∞‖ν(F )‖∞

‖ν(F )‖2

)
,222

where ΣF is defined in (3.3), Σ̃F is the diagonal part of ΣF , and223

ν(F ) := Σ
−1/2
F µF .224
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As a consequence, we obtain225

(3.5)

L∗µ,Σ(k) ≤ 1√
2 log d

+ min
F⊆[d]

Φ̄

(
‖ν(F )‖2 −

16k
√

2 log d‖Σ̃1/2
F Σ

−1/2
F ‖∞‖ν(F )‖∞

‖ν(F )‖2

)
.226

Remark 3.3. Recall from Section 3.1.1 that F is the set of coordinates used for227

classification (i.e. the information in the coordinates F c is discarded). Therefore, we228

essentially work with xF as an input. If the adversary is not present, the optimal clas-229

sification error is achieved via the Bayes linear classifier which has error Φ̄(‖ν(F )‖2).230

However, due to the existence of an adversary, we need to perform truncation which231

influences the error through the second term inside the argument of Φ̄ in (3.4).232

Remark 3.4. The bound in Theorem 3.2 can be used as a guide to choose the233

set of surviving coordinates F . More precisely, we can choose F which minimizes the234

right hand side in (3.5). Later, in Section 3.3, we discuss a simpler mechanism for235

choosing F when the covariance matrix Σ is diagonal (see Remark 3.15 therein).236

Here, we outline the proof of Theorem 3.2. Due to the symmetry, we only237

need to analyze the classification error when y = 1. In this case, an error oc-238

curs only when there exists some x′ ∈ B0(x, k) such that 〈w(F ),x′F 〉k ≤ 0. But239

since ‖x′F − xF ‖0 ≤ ‖x′ − x‖0 ≤ k, Lemma 3.1 implies that for such x′, we have240

|〈w(F ),x′F 〉k − 〈w(F ),xF 〉| ≤ 8k‖w(F ) � xF ‖∞. Therefore, the robust classifica-241

tion error is upper bounded by P (〈w(F ),xF 〉 ≤ 8k‖w(F )� xF ‖∞). But the random242

variable 〈w(F ),xF 〉 is Gaussian with a known distribution, and the proof follows by243

bounding ‖w(F )� xF ‖∞. See Appendix B for details.244

When the covariance matrix Σ is diagonal, ΣF is also diagonal and Σ̃
1/2
F Σ

−1/2
F = I.245

Moreover, ν(F ) = νF where ν := Σ−1/2µ. This yields the following corollary of246

Theorem 3.2.247

Corollary 3.5. Assume that µ,Σ are given such that (2.3) holds and Σ is di-248

agonal. Then, for nonempty F ⊆ [d] we have249

Lµ,Σ(C(k)
F , k) ≤ 1√

2 log d
+ Φ̄

(
‖νF ‖2 −

16k
√

2 log d‖νF ‖∞
‖νF ‖2

)
,250

and in particular251

L∗µ,Σ(k) ≤ 1√
2 log d

+ min
F⊆[d]

Φ̄

(
‖νF ‖2 −

16k
√

2 log d‖νF ‖∞
‖νF ‖2

)
.252

Now we discuss the above bounds via two examples, which we use as running253

examples to discuss our results in the subsequent sections as well. In the following,254

Id ∈ Rd×d and 1d ∈ Rd denote the d × d identity matrix and the all-ones vector of255

size d, respectively.256

Example 3.6. Let Σ = Id and µ = 1√
d
1d. In the absence of the adversary,257

the optimal Bayes classification error is Φ̄(1). Moreover, simplifying the bounds in258

Corollary 3.5, we get259

Lµ,Σ(C(k)
F , k) ≤ 1√

2 log d
+ Φ̄

(√
|F |
d
− 16k

√
2 log d√
|F |

)
.260
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This is minimized when F = [d], resulting in261

L∗µ,Σ(k) ≤ 1√
2 log d

+ Φ̄

(
1− 16k

√
2 log d√
d

)
.262

Note that if k = o(
√
d/ log d), the upper bound is approximately Φ̄(1) which is the263

optimal classification error in the absence of the adversary. This means that for264

k = o(
√
d/ log d), the effect of the adversary can be completely neutralized. We will265

show a lower bound for this example later in Section 3.2 (see Example 3.9 therein)266

which shows that when k ≥
√
d log d, no classifier can do asymptotically better than267

a naive classifier. This establishes a phase transition at k =
√
d up to logarithmic268

terms.269

Example 3.7. Let Σ = Id and µ = (d−
1
3 , cd−

1
2 , cd−

1
2 , . . . , cd−

1
2 ) where c is cho-270

sen such that ‖µ‖2 = 1, resulting in an optimal standard error of Φ̄(1) in the absence271

of the adversary. It turns out that the set F that optimizes the bound in Corollary 3.5272

is the set [2 : d], i.e. we need to discard the first coordinate. In addition to this, we273

can see that if the classifier does not discard the first coordinate, it can neutralize274

adversarial attacks with budget of at most d
1
3−ε, while discarding the first coordinate275

makes the classifier immune to adversarial budgets up to d
1
2−ε. In fact, although the276

first coordinate is more informative compared to the other coordinates, due to this277

very same reason it is more susceptible to adversarial attacks, and it can do more278

harm than good when the input is adversarially corrupted. This example highlights279

the importance of the filtration phase.280

3.2. Lower Bound on Optimal Robust Classification Error: Strategies281

for the Adversary. In this section, we provide a lower bound on the optimal robust282

classification error. This is accomplished by introducing an attack strategy for the283

adversary, and showing that given such a fixed attack, no classifier can achieve better284

than the lower bound that we introduce. The strategy is best understood when285

the covariance matrix is diagonal. Therefore, we first assume that Σ is diagonal and286

denote the diagonal elements of Σ by σ2
1 , . . . , σ

2
d. We later use our strategy for diagonal287

covariance matrices to get a general lower bound for arbitrary Σ (see Theorem 3.11288

at the end of this section).289

Assume that the adversary observes realizations (x, y) ∼ D generated from the290

Gaussian mixture model with parameters µ,Σ, where Σ is diagonal. A randomized291

strategy for the adversary with budget k is identified by a probability distribution292

which upon observing such realizations (x, y), generates a random vector x′ that293

satisfies P (‖x′ − x‖0 ≤ k | x, y) = 1. The goal of the adversary is to design this294

randomized strategy in a way that the corrupted vector x′ bears very little information295

(or even no information) about the label y. In this way, the loss in (2.2) will be296

maximized. Before rigorously defining our proposed strategy for the adversary, we297

illustrated its main idea when d = 1 in Figure 2.298

Recall that ν = Σ−1/2µ. Since Σ is diagonal, νi = µi/σi. We will fix a set of299

coordinates A ⊆ [d] and a specific value for the budget k(A) = ‖νA‖1 log d. We in-300

troduce a randomized strategy for the adversary with the following properties: (i) it301

can change up to k(A) coordinates of the input; and (ii) all the changed coordinates302

belong to A, i.e. the coordinates in Ac are left untouched. We denote this adversarial303

strategy by Adv(A). Given A ⊂ [d], having observed (x, y), Adv(A) follows the pro-304

cedure explained below. Let Z = (Z1, · · · , Zd) ∈ Rd be a random vector that Adv(A)305

constructs using the true input x. First of all, recall that Adv(A) does not touch the306
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−µ1

N (−µ1, σ
2
1)

µ1

N (µ1, σ
2
1)

exp(−(x1 + µ1)2/(2σ2
1))

exp(−(x1 − µ1)2/(2σ2
1))

= p1(x1, y)

Fig. 2: The idea behind our proposed strategy for the adversary when d = 1. Assume
µ1 > 0 and the adversary observes a realization (x1, y) such that y = 1, meaning
that x1 is a realization of N (µ1, σ

2
1) (i.e. the blue curve). If x1 ≤ 0, the adversary

leaves it unchanged, i.e. x′1 = x1. On the other hand, if x1 > 0, we compute the ratio
between the two densities (which is precisely p1(x1, y) shown in the figure), and with
probability p1(x1, y) we pick x′1 from an arbitrary distribution (e.g. Uniform[−1, 1]).
When y = −1, we follow a similar procedure, but reversed. It is easy to see that by
doing so, the distribution of x′1 is the same when y = 1 and y = −1, hence x′1 bears
no information about y.

coordinates that are not in A, i.e. for i ∈ Ac we let Zi = xi. For each i ∈ A, the307

adversary’s act is simple: it either leaves the value unchanged, i.e. Zi = xi, or it308

erases the value, i.e. Zi ∼ Unif[−1, 1]–a completely random value between −1 and309

+1. This binary decision is encoded through a Bernoulli random variable Ii taking310

value 0 with probability pi(xi, y) and value 1 otherwise. Here pi(xi, y) is defined as311

pi(xi, y) :=

{
exp(−(xi+yµi)

2/2σ2
i )

exp(−(xi−yµi)2/2σ2
i )

if sgn(xi) = sgn(yµi)

0 otherwise
312

Note that the condition sgn(xi) = sgn(yµi) ensures that pi(xi, y) ≤ 1. In summary,313

for each i ∈ A, Adv(A) lets314

(3.6) Zi = xi × Ii + Unif[−1, 1]× (1− Ii),315

where Ii = Bernoulli (1− pi(xi, yi)), and the random variables Ii are generated com-316

pletely independently w.r.t. all the other variables. It is easy to see that the following317

holds for the conditional density of ZA given y318

(3.7)

fZA|y(zA|1) = fZA|y(zA| − 1)

=
∏
i∈A

[
1√

2πσ2
i

exp

(
− (|zi|+ |µi|)2

2σ2
i

)
+
αi
2
1 [zi ∈ [−1, 1]]

]
,

319

where for i ∈ A320

αi := P (Ii = 1|y = 1) = P (Ii = 1|y = −1) =

∫ ∞
0

[1− pi(t, 1)]fxi|y(t|1)dt.321

In other words, αi is the probability of changing coordinate i. Finally, Adv(A) checks322

if the vectors Z and x differ within the budget constraint k(A) := ‖νA‖1 log d. Define323

x′ as follows:324

(3.8) x′ :=

{
Z if

∑
i∈A Ii ≤ ‖νA‖1 log d

x o.t.w.
325

9

This manuscript is for review purposes only.



It can be shown that with high probability, Z is indeed within the specified budget326

and x′ = Z. From this definition, it is evident that with probability one we have327

(3.9) ‖x′ − x‖0 ≤ ‖νA‖1 log d,328

and hence Adv(A) is a randomized adversarial strategy that only changes the coordi-329

nates in A and has budget k(A) = ‖νA‖1 log d. Now we use this adversarial strategy330

to show the following result. The proof of Theorem 3.8 is given in Appendix C.331

Theorem 3.8. Assume that the covariance matrix Σ is diagonal and let ν =332

Σ−1/2µ. Then for any subset A ⊆ [d], we have333

L∗µ,Σ
(
‖νA‖1 log d

)
≥ Φ̄(‖νAc‖2)− 1

log d
.334

The main idea behind this result and the above adversarial strategy is that due335

to (3.7), ZA is independent from y and since the coordinates of the input are inde-336

pendent from each other, and since with high probability x′ = Z, the coordinates in337

A have no useful information for the classifier. Hence, the classifier can do no better338

than the optimal Bayes classifier for the remaining coordinates in Ac, which results339

in a classification error of Φ̄(‖νAc‖2).340

We now apply the bound of Thm 3.8 to Examples 3.6, 3.7 that we discussed in341

Section 3.1.2.342

Example 3.9. Assume that µ and Σ are as in Example 3.6. Applying the bound343

in Theorem 3.8, we get344

L∗µ,Σ
(
|A|√
d

log d

)
≥ Φ̄

(√
1− |A|

d

)
− 1

log d
.345

Therefore, setting A = [d], we obtain a lower bound of almost Φ̄(0) = 1/2 for adver-346

sarial budget
√
d log d. In other words, if the adversarial budget is more than

√
d log d,347

asymptotically no classifier can do better than a random guess. This together with the348

discussion in Example 3.6 establishes a phase transition around
√
d (modulo logarith-349

mic terms).350

Example 3.10. Assume that µ and Σ are as in Example 3.7. Applying the bound351

of Theorem 3.8 with A = [d], we obtain L∗µ,Σ(k) ≥ Φ̄(0) − 1/ log d ≈ 1/2 where352

k = (d−
1
3 + c(d− 1)/

√
d) log d ≈

√
d log d. Hence, comparing this to Example 3.7, we353

find similar to Example 3.9 above that a phase transition occurs around adversarial354

budget
√
d up to logarithmic terms.355

Now we state our general lower bound which holds for an arbitrary covariance356

matrix. This is Theorem 3.11 below, whose proof is provided in Appendix D. Given µ357

and Σ, we define the d×d matrix R where the i, j entry in R is Ri,j = Σi,j/
√

Σi,iΣj,j .358

In other words, Ri,j is the correlation coefficient between the ith and the jth coordi-359

nates in our Gaussian noise. Equivalently, with Σ̃ being the diagonal part of Σ, we360

may write361

(3.10) R := Σ̃−
1
2 ΣΣ̃−

1
2 .362

It is evident that since Σ is assumed to be positive definite, R is also positive definite.363

Furthermore, we define u = (u1, . . . , ud) where364

(3.11) ui =
µi√
Σi,i

1 ≤ i ≤ d.365
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Theorem 3.11. With u and R defined as in (3.10) and (3.11) respectively, for366

all A ⊆ [d], we have367

L∗µ,Σ
(

1√
ζmin
‖uA‖1 log d

)
≥ Φ̄(‖uAc‖2)− 1

log d
,368

where ζmin > 0 denotes the minimum eigenvalue of R.369

Remark 3.12. Note that when Σ is diagonal, we have R = Id, ζmin = 1, and u =370

ν = Σ−1/2µ. Therefore, the bound in Theorem 3.11 reduces to that of Theorem 3.8.371

3.3. Optimality of FilTrun in the diagonal regime. We have already seen372

for our two running examples that up to logarithmic terms, our lower and upper373

bounds match (Examples 3.6 and 3.7 for upper bound, and their matching lower374

bounds in Examples 3.9 and 3.10, respectively). First, in Section 3.3.1, we show that375

our lower and upper bounds indeed match up to logarithmic terms in the diagonal376

regime, i.e. when the covariance matrix is diagonal. Then, in Section This in particular377

implies that our robust classification algorithm FilTrun is optimal in this regime.378

3.3.1. Comparing the Bounds. In Theorem 3.13 below, in the diago-379

nal regime we compare our upper bound of Corollary 3.5 and our lower bound of380

Theorem 3.8. Proof of Theorem 3.13 is given in Appendix E. Recall that ν := Σ−1/2µ381

and we assume (2.3) holds. When Σ is diagonal and its diagonal entries are σ2
1 , . . . , σ

2
d,382

we have νi = µi/σi. Without loss of generality, we may assume that the coordinates383

of ν are decreasingly ordered such that384

(3.12) |ν1| ≥ |ν2| ≥ · · · ≥ |νd|.385

Given c ∈ [0, 1], we define386

(3.13) λc := min{λ : ‖ν[1:λ]‖2 ≥ c}.387

Theorem 3.13. If Σ is diagonal and the coordinates in ν are sorted as in (3.12),388

then:389

1. For 0 ≤ c < 1, we have390

L∗µ,Σ
(‖ν[1:λc]‖1

log d

)
≤ 1√

2 log d
+ Φ̄

(√
1− c2 − 16

√
2√

1− c2
√

log d

)
.391

2. For 0 < c ≤ 1, we have392

L∗µ,Σ(‖ν[1:λc]‖1 log d) ≥ Φ̄(
√

1− c2)− 1

log d
.393

Remark 3.14. Roughly speaking, Theorem 3.13 says that up to logarithmic terms,394

we have395

L∗µ,Σ(‖ν[1:λc]‖1) ≈ Φ̄(
√

1− c2).396

Recall from our previous discussion that we are interested in studying adversarial397

budgets scaling as dα, which justifies neglecting the multiplicative logarithmic terms.398

Furthermore, following the proof of Theorem 3.13, the upper bound in the first part399

is obtained by our robust classifier by setting F = {λc, . . . , d}. Roughly speaking, the400

classifier discards the coordinates in ν which constitute fraction c of the `2 norm of ν,401
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Fig. 3: Asymptotic behavior in the diagonal regime: Illustration of scenarios with (a)
a phase transition, and (b) no phase transition

and performs a truncated inner product classification on the remaining coordinates.402

But the `2 norm of the remaining coordinates is roughly
√

1− c2, and the effect403

of truncation is vanishing as long as the adversarial power is below ‖ν[1:λc]‖1 by a404

logarithmic factor. Note that although the top coordinates in ν are relatively more405

important in terms of the classification power, due to the same reason, they are more406

susceptible to adversarial attack.407

Remark 3.15. In view of Theorem 3.13 and Remark 3.14, we can introduce the408

following mechanism for choosing the surviving set F for the adversary given adver-409

sarial power k. Let r(k) = min{r : ‖ν[1:r]‖1 ≥ k log d} and set F = [r(k) : d]. Then410

the classifier C(k)
F achieves the optimal robust classification error of almost Φ̄(

√
1− c2)411

where c = ‖ν[1:r(k)]‖2.412

3.3.2. Asymptotic Analysis, Phase Transitions, and Trade-offs. In this413

section, we perform a thorough analysis when the adversarial budget scales as dα414

using our results in the diagonal regime. Here, we describe the main messages. (i)415

We show that our bounds asymptotically match in the diagonal regime and FilTrun416

is indeed optimal. (ii) Through the asymptotic analysis, we observe that in some417

scenarios, a sharp phase transition on the optimal robust error occurs as we increase418

α := logd k (See Figure 3-(a)). We have already given examples of such scenarios (e.g.419

Example 3.6). In such cases, below the transition, i.e. when α < α0, the optimal420

robust error is the same as the optimal standard error. And when we are above421

the transition, i.e. when α > α0, any classifier becomes useless as the robust error422

becomes 1
2 . As a result, asymptotically speaking, there exists no tradeoff between423

robustness and standard accuracy in scenarios where there is a sharp transition.424

However, there are other scenarios where instead of a sharp phase transition, in425

the asymptotic regime, the optimal robust error continuously increases as a function426

of adversary’s budget (see Figure 3-(b)). In such scenarios, there exists a non-trivial427

tradeoff between robustness and standard accuracy. I.e. to achieve optimal robust428

error it is necessary to filter many informative coordinates which hurts the standard429

accuracy. See Example 3.21 below.430

In order to perform an asymptotic analysis, we assume that the dimension of431

the space, d, goes to infinity. More precisely, we assume that we have a sequence432

(µ(d),Σ(d)) where for each d, µ(d) ∈ Rd and Σ(d) is a diagonal covariance matrix with433

nonzero diagonal entries. We define434

ν(d) := (Σ(d))−1/2µ(d).435

As usual, as in (2.3), in order to keep the optimal classification error in the absence436
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of the adversary fixed, we assume that437

(3.14) ‖ν(d)‖2 = 1 ∀d.438

Furthermore, without loss of generality, we assume that the coordinates in ν are439

sorted in a descending order with respect to their magnitude, i.e.440

(3.15) |ν(d)
1 | ≥ |ν

(d)
2 | ≥ · · · ≥ |ν

(d)
d | ∀d.441

To simplify the notation, we use L∗d(.) as a shorthand for L∗
µ(d),Σ(d)(.). We are mainly442

interested in studying the asymptotic behavior of L∗d(kd) when kd is a sequence of443

adversarial budgets so that kd behaves like dα. Motivated by Theorem 3.13, it is444

natural to define445

(3.16) λ(d)
c := min{λ : ‖ν(d)

[1:λ]‖2 ≥ c} for 0 < c ≤ 1.446

Furthermore, for 0 < c ≤ 1, we define447

(3.17) Ψd(c) := logd ‖ν
(d)

[1:λ
(d)
c ]
‖1.448

Note that since c > 0, λ
(d)
c ≥ 1 and ‖ν(d)

[1:λ
(d)
c ]
‖1 > 0. Therefore, Ψd(c) is well-defined.449

Furthermore, it is easy to verify the following properties for the function Ψd(.):450

Lemma 3.16. Ψd(.) is nonincreasing and Ψd(c) ∈ [−1/2, 1/2] for all c ∈ (0, 1].451

Proof. Note that452

Ψd(c) = logd ‖ν
(d)

[1:λ
(d)
c ]
‖1 ≤ logd ‖ν(d)‖1 ≤ logd(

√
d‖ν(d)‖2) = logd

√
d =

1

2
.453

On the other hand, note that for c > 0, we have λ
(d)
c ≥ 1 and Ψd(c) ≥ logd |ν

(d)
1 | =454

logd ‖ν‖∞. Furthermore, we have 1 = ‖ν(d)‖22 ≤ d‖ν(d)‖∞ which implies that455

‖ν(d)‖∞ ≥ 1/
√
d. Consequently, Ψd(c) ≥ logd 1/

√
d = −1/2. This completes the456

proof.457

Roughly speaking, Theorem 3.13 implies that if kd behaves like dΨd(c), then458

L∗(kd) ≈ Φ̄(
√

1− c2). In order to transform this into a formal asymptotic argument,459

we assume that for all c ∈ (0, 1], the sequence Ψd(c) is convergent, and we define460

Ψ∞(c) := limd→∞Ψd(c) as the limit. Since Ψd(.) is nondecreasing, if the pointwise461

limit Ψ∞(.) exists, it is also nondecreasing and we may define462

Ψ∞(0) := lim
c↓0

Ψd(c).463

Additionally, we can show the following lemma.464

Lemma 3.17. If Ψ∞(.) exists as above, then Ψ∞(c) ∈ [0, 1/2] for all c ∈ [0, 1].465

Proof. For all c > 0 and all d, we have466

‖ν(d)

[1:λ
(d)
c ]
‖1 ≥ ‖ν(d)

[1:λ
(d)
c ]
‖22 ≥ c2.467

Therefore468

Ψ∞(c) = lim
d→∞

Ψd(c) = lim
d→∞

logd ‖ν
(d)

[1:λ
(d)
c ]
‖1 ≥ lim inf

d→∞
2 logd c = 0.469

Sending c to zero we also realize that Ψ∞(0) ≥ 0.470
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Given these, we can formalize the following asymptotic behavior for the optimal471

robust classification error. The proof of Theorem 3.18 below is given in Appendix F.472

Theorem 3.18. If Ψd(.) converges pointwise to a nondecreasing function Ψ∞ :473

[0, 1]→ [0, 1/2] as above, then the following hold for all c ∈ [0, 1]:474

1. If lim supd→∞ logd kd < Ψ∞(c), then lim supd→∞ L∗d(kd) ≤ Φ̄(
√

1− c2).475

2. If If lim infd→∞ logd kd > Ψ∞(c), then lim infd→∞ L∗d(kd) ≥ Φ̄(
√

1− c2).476

It is sometimes more convenient to state the above theorem in terms of the pseudo477

inverse of the function Ψ∞(.) defined as follows. For α ∈ [0, 1], we define478

(3.18) Ψ−1
∞ (α) := inf{Φ̄(

√
1− c2) : Ψ∞(c) ≥ α} ∧ 1

2
.479

Note that since Ψ∞(c) ≤ 1/2 for all c ∈ [0, 1], we have480

Ψ−1
∞ (α) =

1

2
∀c > 1

2
.481

With this, we can restate Theorem 3.18 as follows.482

Corollary 3.19. In the setup of Theorem 3.18, for α ∈ [0, 1] we have483

1. If lim sup logd kd < α then lim supL∗d(kd) ≤ Ψ−1
∞ (α).484

2. If lim inf logd kd > α then lim inf L∗d(kd) ≥ Ψ−1
∞ (α).485

We now discuss this asymptotic result through some examples.486

Example 3.20. Let µ(d) and Σ(d) be as in Example 3.6, i.e. Σ(d) = Id and µ(d) =487
1√
d
1d. Therefore, we have488

ν(d) = (Σ(d))−
1
2µ(d) =

(
1√
d
,

1√
d
, . . . ,

1√
d

)
.489

Using (3.16), we have λ
(d)
c = bdc2c and490

Ψd(c) = logd ‖ν
(d)

[1:λ
(d)
c ]
‖1 = logd

bdc2c√
d

=
1

2
+ o(1).491

Therefore, sending d→∞, we realize that492

Ψ∞(c) =
1

2
∀c ∈ [0, 1].493

Moreover, using (3.18), we get494

Ψ−1
∞ (α) =

{
Φ̄(1) α ≤ 1

2
1
2 α > 1

2 .
495

Figure 4 illustrates Ψ∞(.) and Ψ−1
∞ (.) for this example. Therefore, employing Corol-496

lary 3.19, we realize that497

1. If lim sup logd kd < 1/2 then lim supL∗d(kd) ≤ Φ̄(1)498

2. If lim inf logd kd > 1/2 then L∗(kd) ≥ 1/2.499

In other words, we observe a phase transition around
√
d in the sense that if the500

adversary’s budget is asymptoticallly below
√
d, the classifier can achieve the robust501

classification error Φ̄(1), i.e. as if there is no adversary, while if the adversary’s budget502

is asymptotically above
√
d, no classifier can achieve a robust classification error better503

than that of a trivial classifier. This is consistent with the previous observations in504

this case, i.e. Examples 3.6 and 3.9.505
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Fig. 4: Ψ∞(.) and Ψ−1
∞ (.) for Example 3.20. This observe a phase transition at

√
d

where below this threshold, adversary’s effect can completely be neutralized, while
above this threshold, the classifier can only achieve the trivial bound.

It is interesting to observe that not always we have a phase transition as in the506

above example. Below we discuss an example in which we have no phase transition,507

and the asymptotic robust classification error gradually increases as a function of the508

adversary’s budget.509

Example 3.21. Let Σ = Id. Assume that d = 2n − 1 for some integer n and510

define511

µ(d) =

(√
1/n

1
,

√
1/n√
2
,

√
1/n√
2
, . . . ,

√
1/n√
d/2

, . . . ,

√
1/n√
d/2

)
.512

More precisely, we split the unit `2 norm of µ(d) into n blocks, where the first block513

is the first coordinate, the second block is the second two coordinate, the ith block514

constitutes of 2i coordinates, and the final block is the last d/2 coordinates. Moreover,515

the power is uniformly distributed within each block. It is easy to see that for c =516 √
m/n for 1 ≤ m ≤ n, we have λ

(d)
c = 2m − 1 and517

Ψd(c) = Ψd

(√
m

n

)
= logd

(√
1

n

√
2
m − 1√
2− 1

)
=
c2

2
+ o(1).518

Therefore, Ψd(.) converges pointwise to Ψ∞(.) such that Ψ∞(c) = c2/2 for 0 ≤ c ≤ 1.519

Thereby, we have520

Ψ−1
∞ (α) =

{
Φ̄(1− 2α) 0 ≤ α ≤ 1/2
1
2 1/2 < α ≤ 1.

521

Figure 5 illustrates Ψ∞(.) and Ψ−1
∞ (.) in this examples. As we can see, unlike Exam-522

ple 3.20, we do not have a phase transition here. In fact, the asymptotic optimal robust523

classification error continuously increases as a function of adversarial `0 budget.524

4. Conclusion. In this paper, we studied the binary Gaussian mixture model525

under `0 attack. We developed a novel nonlinear classifier called FilTrun that first526

cleverly selects the robust coordinates of the input and then classifies based on a trun-527

cated inner product operation. Analyzing the performance of our proposed method,528

we derived an upper bound on optimal robust classification error. We further derived529

a lower bound on this, and showed the efficacy of FilTrun: when the covariance530

matrix of Gaussian mixtures is diagonal, FilTrun is asymptotically optimal.531
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Fig. 5: Ψ∞(.) and Ψ−1
∞ (.) for Examples 3.21. Unlike Example 3.20, we do not have a

phase transition here and the asymptotic optimal robust classification error continu-
ously increases as a function of the adversarial `0 budget.

There are many directions to be pursued. Deriving a tighter lower bound and532

resolving the optimality gap for the case of non-diagonal covariance matrices remains533

open. Applying the key ideas of FilTrun, filtration and truncation, to a more com-534

plicated setting (e.g. neural networks) can be of great importance from a practical535

viewpoint. A crucial message of this paper is to emphasize the importance of non-536

linear operations such as truncation for designing defense against `0 attacks. Finally,537

analyzing robust classification error with `0 attacks for more complex stylized mod-538

els such as multi-class Gaussian mixtures, two-layer neural networks, neural tangent539

kernel models, etc. is a promising future direction.540
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Appendix A. Proof of Lemma 3.1.644

In this section, we prove Lemma 3.1. First we need to define some notations and645

discuss some lemmas.646

Given x = (x1, . . . , xd) ∈ Rd, we define the sample average of x as Mean(x) :=647 ∑d
i=1 xi/d. Moreover, we define truncated sum TSumk(x) for k < n/2 as follows. Let648

x(1) ≤ x(2) ≤ · · · ≤ x(n) be the set of sorted values in x. We define649

TSumk(x) :=

d−k∑
i=k+1

x(i),650

which is the truncated sum of the elements in x after removing the top and bottom k651

values. For instance, TSum1(1, 1, 2, 3, 4, 5) = 1 + 2 + 3 + 4 = 10. Moreover, we define652

the truncated mean of x as follows:653

TMeank(x) :=
TSumk(S)

d− 2k
.654

Note that when k = 0, the above quantities reduce to the sum and the sample average,655

respectively. It is straightforward to see that656

(A.1)

∣∣∣∣∣TSumk(x)−
n∑
i=1

xi

∣∣∣∣∣ ≤ 2kM given |xi| ≤M ∀1 ≤ i ≤ n.657

Lemma A.1. Assume that x = (x1, . . . , xd) ∈ Rd and x′ = (x′1, . . . , x
′
d) ∈ Rd658

are given such that x′ is identical to x in all but at most k < d/2 coordinates, i.e.659

‖x − x′‖0 ≤ k. Moreover, assume that for some M < ∞, we have |xi| ≤ M for all660

1 ≤ i ≤ d. Then, if x′(1) ≤ x
′
(2) ≤ · · · ≤ x

′
(d) are the sorted coordinates in x′, we have661

|x′(i)| ≤M ∀ k + 1 ≤ i ≤ d− k.662

Essentially, what Lemma A.1 states is that if we modify at most k coordinates in663

a vector whose elements are bounded by M , in the resulting vector, after truncating664

the top and bottom k coordinates, all the surviving values are also bounded by M .665

Proof of Lemma A.1. Let i1, . . . , il for l ≤ k be the coordinates where x′ differs666

from x, i.e. xij 6= x′ij for 1 ≤ j ≤ l. Note that if |x′ij | > M for any of 1 ≤ j ≤ l,667

then x′ij will definitely fall into the top or bottom k coordinates in the sorted list668

x′(1) ≤ · · · ≤ x
′
(d), since all the d−l ≥ d−k remaining coordinates in x′ are bounded by669

M . This means that all the surviving coordinates x′(k+1), . . . , x
′
(d−k) after truncating670

top and bottom k coordinates in x′ are indeed bounded by M which completes the671

proof.672

Lemma A.2. Assume that x = (x1, . . . , xd) ∈ Rd is given such that |xi| ≤M for673

all 1 ≤ i ≤ d. Also, assume that x′ = (x′1, . . . , x
′
d) ∈ Rd is identical to x in all but at674

most k coordinates, i.e. ‖x− x′‖0 ≤ k. Then, we have675

|TSumk(x)− TSumk(x′)| ≤ 6kM.676

Proof. Let xσ(1) ≤ · · · ≤ xσ(d) and x′σ′(1) ≤ · · · ≤ x
′
σ′(d) be the sorted elements in677
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x and x′ with permutations σ and σ′, respectively. Following the definition, we have678

TSumk(x) =

d−k∑
i=k+1

xσ(i) =
∑

i:σ−1(i)∈{k+1,...,d−k}

xi679

=

d∑
i=1

1
[
σ−1(i) ∈ {k + 1, . . . , d− k}

]
xi.680

681

Similarly, we have682

TSumk(x′) =

d∑
i=1

1

[
σ′
−1

(i) ∈ {k + 1, . . . , d− k}
]
x′i.683

To simplify the notation, for 1 ≤ i ≤ d, we define

yi := 1
[
σ−1(i) ∈ {k + 1, . . . , d− k}

]
xi,

and

y′i := 1

[
σ′
−1

(i) ∈ {k + 1, . . . , d− k}
]
x′i.

Moreover, let684

A1 := {1 ≤ i ≤ d : σ−1(i) ∈ {k + 1, . . . , d− k} and σ′−1(i) /∈ {k + 1, . . . , d− k}}685

A2 := {1 ≤ i ≤ d : σ−1(i) /∈ {k + 1, . . . , d− k} and σ′−1(i) ∈ {k + 1, . . . , d− k}}686

A3 := {1 ≤ i ≤ d : σ−1(i) ∈ {k + 1, . . . , d− k}687

and σ′−1(i) ∈ {k + 1, . . . , d− k} and xi 6= x′i}688

A := A1 ∪A2 ∪A3.689690

Note that if i /∈ A, either σ−1(i) /∈ {k+ 1, . . . , d− k} and σ′−1(i) /∈ {k+ 1, . . . , d− k},691

in which case yi = y′i = 0; or σ−1(i) ∈ {k+ 1, . . . , d− k}, σ′−1(i) ∈ {k+ 1, . . . , d− k},692

and xi = x′i, in which case yi = y′i = xi = x′i. This means that yi = y′i for i /∈ A and693

(A.2)

|TSumk(x)− TSumk(x′)| ≤
∑
i∈A
|yi − y′i|

≤
∑
i∈A1

|yi − y′i|+
∑
i∈A2

|yi − y′i|+
∑
i∈A3

|yi − y′i|.
694

Note that for i ∈ A1, we have y′i = 0 and yi = xi, implying |yi − y′i| = |xi| ≤ M . On695

the other hand, for i ∈ A2, yi = 0 and y′i = x′i. But since σ′−1(i) ∈ {k+ 1, . . . , d− k},696

using Lemma A.1, we have |yi − y′i| = |x′i| ≤ M . Moreover, for i ∈ A3, we have697

yi = xi and y′i = x′i. Also, from Lemma A.1, we have |x′i| ≤ M . Thereby, |yi − y′i| ≤698

|xi|+ |x′i| ≤ 2M . Putting all these together, we get699

(A.3)
∑
i∈A1

|yi − y′i|+
∑
i∈A2

|yi − y′i|+
∑
i∈A3

|yi − y′i| ≤M |A1|+M |A2|+ 2M |A3|.700

Observe that701

(A.4) |A1| ≤ |{1 ≤ i ≤ d : σ′−1(i) /∈ {k + 1, . . . , d− k}}| = 2k.702
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Similarly,703

(A.5) |A2| ≤ 2k.704

On the other hand,705

(A.6) |A3| ≤ |{1 ≤ i ≤ d : xi 6= x′i}| ≤ k.706

Using (A.4), (A.5), and (A.6) back into (A.3) and comparing with (A.2), we realize707

that708

|TSumk(x)− TSumk(x′)| ≤ 6kM,709

which completes the proof.710

The following is a direct consequence of Lemma A.2.711

Corollary A.3. Given x,x′ ∈ Rd and integer k satisfying ‖x−x′‖0 ≤ k < d/2,712

we have713

|TSumk(x)− TSumk(x′)| ≤ 6kmin{‖x‖∞, ‖x′‖∞}.714

We are now ready to give the proof of Lemma 3.1:715

Proof of Lemma 3.1. We have716

|〈w,x′〉k − 〈w,x〉| ≤ |〈w,x′〉k − 〈w,x〉k|+ |〈w,x〉k − 〈w,x〉|717

≤ |〈w,x′〉k − 〈w,x〉k|+ 2k‖w � x‖∞718

= |TSumk(w � x′)− TSumk(w � x)|+ 2k‖w � x‖∞719

(a)

≤ 6k‖w � x‖∞ + 2k‖w � x‖∞720

= 8k‖w � x‖∞,721722

where in step (a) we have used ‖w � x′ − w � x‖0 ≤ ‖x′ − x‖0 ≤ k together with723

Corollary A.3. This completes the proof.724

Appendix B. Proof of the Upper Bound (Theorem 3.2).725

Given x ∈ Rd and y ∈ {±1}, define726

`(k)(C(k)
F ;x, y) := max

x′∈B0(x,k)
`(C(k)

F ;x′, y).727

We have728

`(k)(C(k)
F ;x, 1) = 1

[
∃x′ ∈ B0(x, k) : C(k)

F (x′) 6= 1
]

729

= 1 [∃x′ ∈ B0(x, k) : 〈w(F ),x′F 〉k ≤ 0]730731

Using Lemma 3.1, for x′ such that ‖x′−x‖0 ≤ 0, since ‖x′F −xF ‖0 ≤ ‖x′−x‖0 ≤ k,732

we have733

|〈w(F ),x′F 〉k − 〈w(F ),xF 〉| ≤ 8k‖w(F )� xF ‖∞.734

This means that735

1 [∃x′ ∈ B0(x, k) : 〈w(F ),x′F 〉k ≤ 0] ≤ 1 [〈w(F ),xF 〉 ≤ 8k‖w(F )� xF ‖∞] ,736
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and737

(B.1)

E(x,y)∼D

[
`(k)(C(k)

F ;x, 1)|y = 1
]
≤ P (〈w(F ),xF 〉 ≤ 8k‖w(F )� xF ‖∞| y = 1) .738

Let ΣF be as defined in (3.3) and let Σ̃F be the diagonal part of ΣF . Note that since739

Σ is positive definite, Σ̃F is diagonal with positive diagonal entries. Hence, we may740

write741

(B.2)

‖w(F )� xF ‖∞ = ‖(Σ̃1/2w(F ))� (Σ̃−1/2xF )‖∞ ≤ ‖Σ̃1/2
F w(F )‖∞‖Σ̃−1/2

F xF ‖∞.742

Let σ2
i denote the ith diagonal coordinate of Σ. Fix i ∈ F and note that conditioned743

on y = 1, we have xi ∼ N (µi, σ
2
i ). On the other hand, with a := Σ̃

−1/2
F xF , we have744

ai ∼ N (σ−1
i µi, 1). Note that Φ̄(σ−1

i µi) is the optimal Bayes classification error of y745

given xi only, which is indeed not smaller than the optimal Bayes classification error746

of y given the whole vector x, which is in turn equal to Φ̄(‖ν‖2) = Φ̄(1). Since Φ̄ is747

decreasing, this implies σ−1
i µi ≤ 1. Consequently, by union bound, we have748

P
(
‖Σ̃−1/2

F xF ‖∞ > 1 +
√

2 log d
)
≤
∑
i∈F

P
(
ai − σ−1

i µi >
√

2 log d
)

749

≤ dΦ̄(
√

2 log d)750

≤ d 1√
2π
√

2 log
e− log d

751

≤ 1√
2 log d

.752
753

Thereby, we get754

(B.3) P
(
‖Σ̃−1/2

F xF ‖∞ > 2
√

2 log d | y = 1
)
≤ 1√

2 log d
.755

On the other hand, we have756

(B.4) ‖Σ̃1/2
F w(F )‖∞ = ‖Σ̃1/2

F Σ
−1/2
F ν(F )‖∞ ≤ ‖Σ̃1/2

F Σ
−1/2
F ‖∞‖ν(F )‖∞,757

where ‖Σ̃1/2
F Σ

−1/2
F ‖∞ denotes the operator norm of Σ̃

1/2
F Σ

−1/2
F induced by the vector758

`∞ norm. Using (B.2), (B.3), and (B.4) back into (B.1) and simplifying, we get759

E(x,y)∼D

[
`(k)(C(k)

F ;x, 1)|y = 1
]

760

≤ 1√
2 log d

+ P
(
〈w(F ),xF 〉 ≤ 16k

√
2 log d‖Σ̃1/2

F Σ
−1/2
F ‖∞‖ν(F )‖∞| y = 1

)
761
762

It is easy to see that conditioned on y = 1, 〈w(F ),xF 〉 ∼ N (‖ν(F )‖22, ‖ν(F )‖22).763

Using this in the above bound, we get764

E(x,y)∼D

[
`(k)(C(k)

F ;x, 1)|y = 1
]

765

≤ 1√
2 log d

+ Φ̄

(
‖ν(F )‖2 −

16k
√

2 log d‖Σ̃1/2
F Σ

−1/2
F ‖∞‖ν(F )‖∞

‖ν(F )‖2

)
.766

767
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Due to the symmetry, we have the same bound conditioned on y = −1 which yields768

the desired result.769

Appendix C. Lower Bound in the Diagonal Regime (Theorem 3.8).770

Before giving the proof of Theorem 3.8, we need the following lemma.771

Lemma C.1. For any random adversarial strategy with budget k which has a den-772

sity function fx′|x,y, we have773

L∗µ,Σ(k) ≥ 1

2
P
(
fx′|y(x′|1) = fx′|y(x′| − 1)

)
+ P

(
fx′|y(x′| − 1) > fx′|y(x′|1)

∣∣∣∣y = 1

)
,774

Proof. Note that the right hand side is indeed the Bayes optimal error associated775

with the MAP estimator assuming that the classifier knows adversary’s strategy. Since776

the classifier does not know the adversary’s strategy in general, the right hand side is777

indeed a lower bound on the optimal robust classification error.778

Now we are ready to prove Theorem 3.8.779

Proof of Theorem 3.8. Note that when A is empty, there is no adversarial modifi-780

cation and the standard Bayes analysis implies that L∗µ,Σ(0) = Φ̄(‖ν‖2) = Φ̄(‖νAc‖2)781

and the desired bound holds. Hence, we may assume that A is nonempty for the rest782

of the proof.783

Note that due to (3.9), the randomized strategy Adv(A) is valid for the adversary784

given the budget ‖ν‖1 log d. Thereby we may use Lemma C.1 with Adv(A) to bound785

L∗µ,Σ(‖νA‖1 log d) from below. Before that, we show that with high probability under786

the above randomized strategy for the adversary, recalling the definition of random787

variables Ii for i ∈ A from (3.6), we have
∑
i∈A Ii ≤ ‖νA‖1 log d and hence x′ = Z.788

It is easy to see that for each i, P (Ii = 1|y = 1) = P (Ii = 1|y = −1); therefore,789

P (Ii = 1) = P (Ii = 1|y = sgn(µi))790

=

∫ ∞
0

[1− pi(t, sgn(µi))]fxi|y(t|sgn(µi))dt791

=

∫ ∞
0

[
1− exp(−(t+ |µi|)2/2σ2

i )

exp(−(t− |µi|)2/2σ2
i )

]
exp

(
−(t− |µi|)2/2σ2

i

)
dt792

= 1− Φ̄(|νi|)793

= Erf(|νi|/
√

2)794

≤

(√
2

π
|νi|

)
∧ 1.795

796

Hence, we have797

P (Ii = 1) = P (Ii = 1|y = 1) = P (Ii = 1|y = −1) ≤

(√
2

π
|νi|

)
∧ 1.798

Therefore, using Markov’s inequality, if I is the indicator of the event
∑
i∈A Ii >799

‖νA‖1 log d, we have800

(C.1) P (I = 1) = P (I = 1|y = 1) = P (I = 1|y = −1) ≤
√

2/π
∑
i∈A |νi|

‖νA‖1 log d
≤ 1

log d
.801

Now, we bound L∗µ,Σ(‖νA‖1 log d) from below in the following two cases.802
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Case 1: A = [d]. In this case, using Lemma C.1, we have803

L∗µ,Σ(‖νA‖1 log d) ≥ 1

2
P
(
fx′|y(x′|1) = fx′|y(x′| − 1)

)
804

(a)
=

1

2
P
(
fx′|y(x′|1) = fx′|y(x′| − 1) | y = 1

)
805

≥ 1

2
P
(
fx′|y(x′|1) = fx′|y(x′| − 1), I = 0 | y = 1

)
806

(b)
=

1

2
P
(
fZ|y(Z|1) = fZ|y(Z| − 1) | y = −1

)
807

≥ 1

2
P
(
fZ|y(Z|1) = fZ|y(Z| − 1) | y = 1

)
− 1

2
P (I = 1 | y = 1)808

(c)

≥ 1

2
− 1

2 log d
,809

810

where (a) uses the symmetry, (b) uses the fact that when I = 0, by definition we have811

x′ = Z, and (c) uses (3.7) and (C.1).812

Case 2: A $ [d]. Using Lemma C.1, we have813

(C.2)

L∗µ,Σ(‖νA‖1 log d) ≥ P
(
fx′|y(x′| − 1) > fx′|y(x′|1) | y = 1

)
≥ P

(
fx′|y(x′| − 1) > fx′|y(x′|1), I = 0 | y = 1

)
(a)
= P

(
fZ|y(Z| − 1) > fZ|y(Z|1), I = 0 | y = 1

)
≥ P

(
fZ|y(Z| − 1) > fZ|y(Z|1)|y = 1

)
− P (I = 1 | y = 1)

(b)

≥ P
(
fZ|y(Z| − 1) > fZ|y(Z|1) | y = 1

)
− 1

log d

814

where (a) uses the fact that by definition, when I = 0, we have x′ = Z, and (b)815

uses (C.1). Note that since Zi are conditionally independent given y, we have816

fZ|y(Z|y) = fZA|y(ZA|y)fZAc |y(ZAc |y).817

But from (3.7), we have fZA|y(ZA|1) = fZA|y(ZA| − 1) with probability one. Using818

this in (C.2), we get819

L∗µ,Σ(‖νA‖1 log d) ≥ P
(
fZAc |y(ZAc | − 1) > fZAc |y(ZAc |1)|y = 1

)
− 1

log d
820

= Φ̄(‖νAc‖2)− 1

log d
.821

822

We may combine the two cases following the convention that when A = [d],823

Ac = ∅ and ‖νAc‖2 = 0. This completes the proof.824

Appendix D. Proof of the General Lower Bound (Theorem 3.11).825

In this section, we prove Theorem 3.11 by providing a general lower bound for826

the optimal robust classification error which relaxes the diagonal assumption for the827

covariance matrix. Our strategy is to approximate the covariance matrix by a diagonal828

matrix and use our lower bound of Theorem 3.8. It turns out that the optimal robust829

classification error is monotone with respect to the positive definite ordering of the830

covariance matrix. Lemma D.1 below formalizes this. Intuitively speaking, the reason831

is that more noise makes the classification more difficult, resulting in an increase in832

the optimal robust classification error.833
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Lemma D.1. Assume that µ ∈ Rd and Σ1 and Σ2 are two positive definite co-834

variance matrices such that Σ1 � Σ2. Then for 0 ≤ k ≤ d we have835

L∗µ,Σ1
(k) ≤ L∗µ,Σ2

(k).836

Proof. Let y ∼ Unif(±1), x1 ∼ N (yµ,Σ1) and x2 ∼ N (yµ,Σ2). Since Σ1 � Σ2,837

we may write Σ2 = Σ1 +A such that A � 0. In addition to this, we may couple x1,x2838

on the same probability space as x2 = x1 + Z where Z ∼ N (0, A) is independent839

from all other variables. Now, fix a classifier C2 : Rd → {±1} and note that840

(D.1)

Lµ,Σ2
(C2, k) = P (∃x′ ∈ B0(x2, k) : C2(x′) 6= y)

= P (∃x′ ∈ B0(x1 +Z, k) : C2(x′) 6= y)

= P (∃x′′ ∈ B0(x1, k) : C2(x′′ +Z) 6= y)

≥ inf
C̃2:Rd×Rd→{±1}

P
(
∃x′′ ∈ B0(x1, k) : C̃2(x′′,Z) 6= y

)841

Now, fix C̃2 : Rd × Rd → {±1} and note that using the independence of Z, we may842

write843

(D.2)

P
(
∃x′′ ∈ B0(x1, k) : C̃2(x′′,Z) 6= y

)
= E

[
E
[
1

[
∃x′′ ∈ B0(x1, k) : C̃2(x′′,Z) 6= y

] ∣∣∣∣Z]]
=

∫
P
(
∃x′′ ∈ B0(x1, k) : C̃2(x1, z) 6= y

)
fZ(z)dz

844

But for z ∈ Rd, if we let C̃2,z(x) := C̃2(x, z), we get845

P
(
∃x′′ ∈ B0(x1, k) : C̃2(x1, z) 6= y

)
= P

(
∃x′′ ∈ B0(x1, k) : C̃2,z(x1) 6= y

)
846

≥ inf
C1:Rd→{±1}

P
(
∃x′′ ∈ B0(x1, k) : C̃1(x1) 6= y

)
847

= L∗µ,Σ1
(k).848849

Comparing this with (D.1) and (D.2), we realize that Lµ,Σ2
(C2, k) ≥ L∗µ,Σ1

(k). Since850

this holds for arbitrary C2, optimizing for C2 yields the desired result.851

Note that since Σ is positive definite, we have Σ � αId where α > 0 is the852

minimum eigenvalue of Σ. Therefore, we may use Lemma D.1 together with the lower853

bound of Theorem 3.8 for L∗µ,αId(.) to obtain a lower bound for L∗µ,Σ(.). However,854

it turns out that it is more efficient in some scenarios to first normalize the diagonal855

entries of the covariance matrix. More precisely, define the d×dmatrixR where the i, j856

entry in R is Ri,j = Σi,j/
√

ΣiiΣjj . In other words, Ri,j is the correlation coefficient857

between the ith and the jth coordinates in our Gaussian noise. Equivalently, with Σ̃858

being the diagonal part of Σ, we may write859

(D.3) R := Σ̃−
1
2 ΣΣ̃−

1
2 .860

It is evident that since Σ is assumed to be positive definite, R is also positive definite.861

In fact, R is the covariance matrix of the normalized random vector x′ such that862

x′i = xi/
√

Σi,i where x ∼ N (yµ,Σ). Also , all the diagonal entries in R are equal863
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to 1, and when Σ is diagonal, R = Id is the identity matrix. Furthermore, we define864

u = (u1, . . . , ud) where865

(D.4) ui =
µi√
Σi,i

1 ≤ i ≤ d.866

In fact, with x′ being the normalized of x as above, we have u = E [x′|y = 1]. In867

Lemma D.2, we show that such coordinate-wise normalization does not affect the868

optimal robust classiciation error. The main reason for this is that any coordinate-869

wise product of a vector by positive values does not change the `0 norm. This property870

is unique to the combinatorial `0 norm, and indeed does not hold for `p norms for871

p ≥ 1.872

Lemma D.2. Given a vector a ∈ Rd with strictly positive entries, if we define873

µ′ ∈ Rd and Σ′ ∈ Rd×d as µ′i = aiµi and Σ′i,j = aiajΣi,j, then we have874

L∗µ,Σ(k) = L∗µ′,Σ′(k) ∀0 ≤ k ≤ d.875

In particular, with u and R defined above, we have876

L∗µ,Σ(k) = L∗u,R(k) ∀0 ≤ k ≤ d.877

Proof. Pick ε > 0 together with a classifier C such that878

(D.5) L∗µ,Σ(k) ≥ Lµ,Σ(C, k)− ε.879

Let x ∼ N (yµ,Σ), i.e. (x, y) ∼ D, and define x′ := a�x. Note that x′ ∼ N (yµ′,Σ′).880

Let D′ denote the joint distribution of (x′, Y ). Recall that by definition Lµ,Σ(C, k) =881

E(x,y)∼D
[
maxx′∈B0(x,k) `(C;x′, y)

]
. Note that x′ ∈ B0(x, k) iff ‖x′ − x‖0 ≤ k. Since882

all the entries in a are nonzero, this is equivalent to ‖a�x′−a�x‖0 ≤ k which is in883

turn equivalent to a � x′ ∈ B0(a � x, k). Therefore, if a−1 denotes the elementwise884

inverse of a, we may write885

Lµ,Σ(C, k) = E(x,y)∼D

[
max

x′′∈B0(a�x,k)
`(C;a−1 � x′′, y)

]
.886

Let C′ be the classifier defined that C′(x) := C(a� x). With this, we can rewrite the887

above as888

Lµ,Σ(C, k) = E(x,y)∼D

[
max

x′′∈B0(a�x,k)
`(C′;x′′, y)

]
889

= E(x′,y)∼D′

[
max

x′′∈B0(x′,k)
`(C′;x′′, y)

]
890

= Lµ′,Σ′(C′, k)891

≥ L∗µ′,Σ′(k).892893

Comparing this with (D.5) and sending to zero, we realize that L∗µ,Σ(k) ≥ L∗µ′,Σ′(k).894

Changing the order of (µ,Σ) and (µ′,Σ′) and replacing a with a−1 yields the other895

direction and completes the proof.896

Using the above tools, we are now ready to prove Theorem 3.11.897
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Proof of Theorem 3.11. Note that since Σ is positive definite, R is also positive898

definite and ζmin > 0. Moreover, we have R � ζminId. Therefore, using Lemmas D.1899

and D.2 above, we realize that for all k, we have900

(D.6) L∗µ,Σ(k) = L∗u,R(k) ≥ L∗u,ζminId
(k).901

Since ζminId is diagonal, we may use our lower bound of Theorem 3.8 with ν =902

(ζminId)
−1/2u = u/

√
ζmin to obtain the following bound with holds for all A ⊆ [d]903

L∗u,ζminId

(
1√
ζmin
‖uA‖1 log d

)
≥ Φ̄(‖uAc‖2)− 1

log d
.904

The proof is complete by comparing this with (D.6).905

Appendix E. Proof of Theorem 3.13.906

We use the bound in Corollary 3.5 with F = [λc : d], which simplifies into the907

following with k = ‖ν[1:λc]‖1/ log d:908

(E.1)

L∗µ,Σ
(‖ν[1:λc]‖1

log d

)
≤ 1√

2 log d
+ Φ̄

(
‖ν[λc:d]‖2 −

‖ν[1:λc]‖1‖ν[λc:d]‖∞
‖ν[λc:d]‖2

16
√

2√
log d

)
.909

Note that we have910

(E.2) ‖ν[λc:d]‖22 = 1− ‖ν1:λc−1‖22 ≥ 1− c2.911

On the other hand,912

(E.3)

‖ν[1:λc]‖1‖ν[λc:d]‖∞ = ‖ν[1:λc]‖1|νλc
|

≤ ‖ν[1:λc]‖22
≤ ‖ν‖22
= 1

913

Substituting (E.2) and (E.3) back into (E.1), we get914

(E.4) L∗µ,Σ
(‖ν[1:λc]‖1

log d

)
≤ 1√

2 log d
+ Φ̄

(√
1− c2 − 16

√
2√

1− c2
√

log d

)
915

Furthermore, with A = [1 : λc], the bound in Theorem 3.8 implies that916

(E.5) L∗µ,Σ(‖ν[1:λc]‖1 log d) ≥ Φ̄(
√

1− c2)− 1

log d
.917

This completes the proof.918

Appendix F. Proof of Theorem 3.18.919

Note that since Ψd(.) is nondecreasing for all d, if Ψ∞(c) = lim Ψd(c) exists,920

Ψ∞(.) is indeed nondecreasing and Ψ∞(0) is well-defined.921

Part 1 First we assume that c ∈ (0, 1). Since Ψ∞(c) = lim Ψd(c) and922

log log d/ log d→ 0, lim sup logd kd < Ψ∞(c) implies that for d large enough, we have923

logd kd < Ψd(c)−
log log d

log d
.924
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Thereby,925

logd kd < logd ‖ν
(d)

[1:λ
(d)
c ]
‖1 −

log log d

log d
= logd

‖ν(d)

[1:λ
(d)
c ]
‖1

log d
.926

Hence, Theorem 3.13 implies that927

L∗d(kd) ≤ L∗d

‖ν(d)

[1:λ
(d)
c ]
‖1

log d

 ≤ 1√
2 log d

+ Φ̄

(√
1− c2 − 16

√
2√

1− c2
√

log d

)
.928

Sending d to infinity, we get lim supL∗d(kd) ≤ Φ̄(
√

1− c2). Next, we consider c =929

0. Note that since Ψ∞(.) is nondecreasing, lim sup logd kd < Ψ∞(0) implies that930

lim sup logd kd < Ψ∞(c) for all c > 0. Consequently, the above bound implies931

that lim supL∗(kd) ≤ Φ̄(
√

1− c2) for all c > 0. Sending c to zero, we realize that932

lim supL∗(kd) ≤ Φ̄(0). Finally, for c = 1, note that the classifier that always outputs 1933

has misclassification error at most 1/2. This implies that irrespective of the sequence934

kd, we always have lim supL∗d(kd) ≤ 1/2 = Φ̄(
√

1− 12) and the bound automatically935

holds for c = 1.936

Part 2 First we assume that c ∈ (0, 1]. Similar to the first pare, lim inf logd kd >937

Ψ∞(c) implies that for d large enough, we have938

logd kd > Ψd(c) +
log log d

log d
,939

and940

logd kd > logd ‖ν
(d)

[1:λ
(d)
c ]
‖1 +

log log d

log d
= logd(log d‖ν(d)

[1:λ
(d)
c ]
‖1).941

Hence, Theorem 3.13 implies that942

L∗d(kd) ≥ L∗d(log d‖ν(d)

[1:λ
(d)
c ]
‖1) ≥ Φ̄(

√
1− c2)− 1

log d
.943

Sending d → ∞, we get lim inf L∗d(kd) ≥ Φ̄(
√

1− c2). For the case c = 0, note944

that irrespective of the sequence kd, we always have L∗d(kd) ≥ L∗d(0) = Φ̄(
√

1− 02).945

Thereby, the result for c = 0 automatically holds.946
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