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ROBUST CLASSIFICATION UNDER /¢, ATTACK FOR THE
GAUSSIAN MIXTURE MODEL

PAYAM DELGOSHA*, HAMED HASSANIf, AND RAMTIN PEDARSANT}

Abstract. It is well-known that machine learning models are vulnerable to small but cleverly-
designed adversarial perturbations that can cause misclassification. While there has been major
progress in designing attacks and defenses for various adversarial settings, many fundamental and
theoretical problems are yet to be resolved. In this paper, we consider classification in the presence
of ¢p-bounded adversarial perturbations, a.k.a. sparse attacks. This setting is significantly different
from other £,-adversarial settings, with p > 1, as the £op-ball is non-convex and highly non-smooth.
Under the assumption that data is distributed according to the Gaussian mixture model, our goal
is to characterize the optimal robust classifier and the corresponding robust classification error as
well as a variety of trade-offs between robustness, accuracy, and the adversary’s budget. To this end,
we develop a novel classification algorithm called FilTrun that has two main modules: Filtration
and Truncation. The key idea of our method is to first filter out the non-robust coordinates of the
input and then apply a carefully-designed truncated inner product for classification. By analyzing
the performance of FilTrun, we derive an upper bound on the optimal robust classification error.
We further find a lower bound by designing a specific adversarial strategy that enables us to derive
the corresponding robust classifier and its achieved error. For the case that the covariance matrix of
the Gaussian mixtures is diagonal, we show that as the input’s dimension gets large, the upper and
lower bounds converge; i.e. we characterize the asymptotically-optimal robust classifier. Throughout,
we discuss several examples that illustrate interesting behaviors such as the existence of a phase
transition for adversary’s budget determining whether the effect of adversarial perturbation can be
fully neutralized or not.

1. Introduction. Machine learning has been widely used in a variety of appli-
cations including image recognition, virtual assistants, autonomous driving, many of
which are safety-critical. Adversarial attacks to machine learning models in the form
of a small perturbation added to the input have been shown to be effective in causing
classification errors [4, 33, 10, 5, 17]. Formally, the adversary aims to perturb the
data in a small £,-neighborhood so that the perturbed data is “close” to the original
data (e.g. imperceptible perturbation in the case of an image) and misclassification
occurs. There have been a variety of attacks and defenses proposed in the literature
which mostly focus on 3 or £, bounded perturbations [2, 19, 35]. The state-of-the-art
empirical defense against adversarial attacks is iterative training with adversarial ex-
amples [18]. While adversarial training can improve robustness, it is shown that there
is a fundamental tradeoff between robustness and test accuracy, and such defenses
typically lack good generalization performance [34, 32, 26, 1, 36, 13].

The focus of this paper is different from such prior work as we consider the problem
of robust classification under £p-bounded attacks. In this setting, given a pre-specified
budget k, the adversary can choose up to k coordinates and arbitrarily change the
value of the input at those coordinates. In other words, the adversary can change the
input within the so-called ¢p-ball of radius k. In contrast with ¢,-balls (p > 1), the
£y-ball is non-convex and highly non-smooth. Moreover, the ¢y ball contains inherent
discrete (combinatorial) structures that can be exploited by both the learner and the
adversary. As a result, the {y-adversarial setting bears several fundamental challenges
that are absent in other adversarial settings commonly studied in the literature and
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most techniques from prior work do not readily apply in the ¢y setting. Complicating
matters further, it can be shown that any piece-wise linear classifier, e.g. a feed-
forward deep neural network with ReLu activations, completely fails in the ¢y setting
[31]. These all point to the fact that new methodologies are required in the ¢y setting.

The {y-adversarial setting involves sparse attacks that perturb only a small por-
tion of the input signal. This has a variety of applications including natural language
processing [14], malware detection [11], and physical attacks in object detection [16].
Prior work on ¢, adversarial attacks can be divided into two categories of white-
box attacks that are gradient-based, e.g. [5, 22, 21], and black-box attacks based on
zeroth-order optimization, e.g. [29, 7]. Defense strategies against £yp-bounded attacks
have also been proposed, e.g. defenses based on randomized ablation [15] and de-
fensive distillation [23]. Moreover, [31] develops a simple mathematical framework to
show the existence of targeted adversarial examples with £yp-bounded perturbation in
arbitrarily deep neural networks.

Despite this interesting recent progress and practical relevance, many fundamen-
tal theoretical questions in the £y-setting have so far been unanswered: What are the
key properties of a robust classifier (recall that all piece-wise linear classifiers fail)?
What is the optimal robust classifier in standard theoretical settings such the Gauss-
ian mizture model for data? Is there a trade-off between robustness and accuracy?
How does the (optimal) robust classification error behave as the adversary’s budget k
increases? Are there any phase transitions?

We consider the problem of classification with fy-adversarially perturbed inputs
under the assumption that data is distributed according to the Gaussian mixture
model. We formally introduce this setting in Section 2, and address the questions
above in the proceeding sections. In particular, instead of searching for the exact
form of the optimal robust classifier (which is intractable), we follow a design-based
approach: We introduce a novel algorithm for classification as well as strategies for
the adversary. We then precisely characterize the error performance of these method-
ologies, and consequently, analyse the optimal robust classification error, tradeoffs be-
tween robustness and accuracy, phase transitions, etc. We envision that our proposed
classification method introduces important modules and insights that are necessary to
obtain robustness against fg-adversaries for general data distributions (and practical
datasets), going beyond the theoretical setting of this paper.

Summary of Contributions. The main contributions of this paper are as follows:
e We propose a new robust classification algorithm called FilTrun that is based
on two main modules: Filtration and Truncation (See Section 3.1.1 and Al-
gorithm 3.1 therein). The filtration module removes the non-robust coordi-
nates (features) from the input by zeroing out their values. The result is then
passed through the truncation module which returns a label by computing
a truncated inner product with a weight vector whose weights are optimized
according to the distribution of un-filtered (surviving) coordinates. The trun-
cation module is inspired by tools from robust statistics and guarantees that
major outlier values in the input vector, which are possibly caused by the
adversary, do not pass to affect the final decision. We highlight that the
proposed classifier is highly nonlinear. This is consistent with the simple
observation that any linear classifier fails to be robust in the presence of £y
attacks.
e We analytically derive the robust classification error of the proposed clas-
sifier. This in particular serves as an upper bound on the optimal robust
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classification error (See Theorem 3.2 and Corollary 3.5).

e We introduce adversarial strategies which, given sufficient budget, perturb
the input in a way that the information about the true label is totally erased
within the adversarially modified coordinates. The key idea is to pick a
subset of the coordinates and to modify their distribution so that they become
independent from the true label. This leads to a lower bound for the optimal
robust error. (See Theorems 3.8 and 3.11).

e In the case of having a diagonal covariance matrix for the Gaussian mixtures,
we prove that our proposed algorithm FilTrun is indeed asymptotically-
optimal, i.e. as the input dimension d approaches infinity, the upper and
lower bounds converge to the same analytical expression (See Theorems 3.13
in Section 3.3.2). To the best of our knowledge, this is the first result that
establishes optimality for the robust classification error of any mathematical
model with ¢y attack.

e We discuss our results through several example scenarios. In certain scenarios,
a phase transition is observed in the sense that for a threshold «g, when the
adversary’s budget is asymptotically below d*°, its effect can be completely
neutralized, while if the adversary’s budget is above d“°, no classifier can
do better than a naive classifier. In some other scenarios, no sharp phase
transition is existent, leading to a trade-off between robustness and accuracy.

2. Problem Formulation. We consider the binary Gaussian mixture model
where the distribution for the data generation is specified by the label being y ~
Unif{#+1} and ¢ ~ N(yu,X), i.e. the Gaussian distribution with mean yu and
covariance matrix X, where p € R? and ¥ is positive definite. Hereafter, we denote
this distribution by (x,y) ~ D and refer to y as the label and to @ as the input.
Our results correspond to arbitrary choices of p and X, however, we consider as
running example an important special case in which ¥ is a diagonal matrix, i.e. the
coordinates of x are independent conditioned on y. Focusing on classification, we
consider functions of the form C : R? — {—1,1} that predict the label from the input.
As a metric for the discrepancy between the prediction of the classifier on the input
x and the true label y, we consider the 0-1 loss £(C;x,y) = 1 [C(x) # y] . We consider
classification in the presence of an adversary that perturbs the input @ within the
fo-ball of radius k:

Bo(x, k) == {z' e R : ||& — a'||o < k},

where for @ = (21, ,24) we define ||z||o := Z?:l 1[xz; # 0]. In other words, the

adversary can arbitrarily modify at most k coordinates of & to obtain x’, and feed the
new vector ' to the classifier. We call k the budget of the adversary. In this setting,
the robust classification error of a classifier C is defined to be the following:

(2.1) Ly 5(C. k) :=Egy~p mle%l?();’k) 0C;x'y) |-

We aim to design classfiers with minimum robust classification error. Hence, we define
the optimal robust classification error by minimizing (2.1) over all possible classifiers:

(2.2) (k) = il’clf L, 5(C,k).

Our goal in this paper is to precisely characterize £}, y,(k) parameterized by X, p and
in different regimes of the adversary’s budget k.

3
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It is well known that in the absence of the adversary, i.e. when k = 0, the Bayes
optimal classifier is the linear classifier C(x) = sgn ((X~'p,)) which achieves the
optimal standard error of ®(||v||2) where v := £~/2y and ®(z) := 1 — ®(x) denotes
the complementary CDF of a standard normal distribution. In order to fix the base-
line, specifically to have a meaningful asymptotic discussion, we may assume without
loss of generality that

(2.3) Ivllz = |57 2pll2 = 1.

Hence, the optimal standard error, which is a lower bound for (2.2), becomes ®(1).

To highlight some of the main challenges of the {y-adversarial setting, we note
that linear classifiers in general have been very successful in the Gaussian mixture
setting. Apart from the fact that the Bayes-optimal classier is linear (when there is
no adversary), even when the adversarial corruptions are chosen in a £,-ball for p > 1
it can be shown that the optimal robust classifiers in many cases are also linear (see
[3, 9]). In contrast, in the presence of fy-adversaries, it is not hard to show that any
linear classifier completely fail. More precisely, when C is linear and k > 1, we have
L,s(C k) = % Such failure of linear classifiers showcases, on the one hand, how
powerful the adversary is, and on the other hand, the necessity of new methodologies
in designing robust classifiers.

Further Related Work. For ¢, adversaries, p > 1, Gaussian mixture models have
been the main setting used in prior work to investigate optimal rules, trade-offs, and
various other phenomena for robust classification; See e.g. [28, 3, 9, 12, 27, 8, 25, 6,
20, 24]. Further, [30] considers data to be uniformly distributed on the sphere or cube
and shows the inevitability of adversarial examples in ¢,-settings, p > 0. In contrast,
to the best of our knowledge, our work provides the first comprehensive study on the
ly-adversarial setting using the Gaussian mixture model.

Notation. Given two vectors z,y € R?, £ ®y € R? denotes the elementwise product
of x and y, i.e. (z1y1,...,2qyq). Moreover, sort(x) denotes the vector containing the
elements in x in descending order. For a € R, sgn(a) returns the sign of a. We use
[d] to denote the set {1,...,d} and [i : j] denotes the set {i,i+1,...,5}. Given a
vector € R? and a subset A C [d], €4 = (z, : a € A) € RI4l denotes the subvector
of & consisting of the coordinates in A. Given a matrix X, its diagonal part, denoted
by X, has the same diagonal entries as ¥ and its other entries are 0. Given a matrix
A € R¥™4 || Al|o denotes the operator norm of A induced by the vector £, norm, i.e.

d
[Alloo := suPgro [[A |0 /(|00 = maxi<ica D5y [Ai

3. Main Results. In this section, we state our main results that include (i) the
proposed algorithm and its performance analysis that serves as an upper bound on
the optimal robust classification error (Section 3.1), (ii) lower bound on the optimal
robust classification error (Section 3.2), and (iii) discussion on the optimality of the
proposed algorithm (Section 3.3). Throughout, we illustrate our theoretical results
and their ramifications via several examples.

3.1. Upper Bound on the Optimal Robust Classification Error: Algo-
rithm Description and Theoretical Guarantees. In Section 3.1.1, we introduce
FilTrun, our proposed robust classification algorithm, and in Section 3.1.2, we ana-
lyze its performance.

3.1.1. Algorithm Description. We describe our proposed algorithm FilTrun,
a robust classifier which is based on two main modules: Truncation and Filtration. We

4
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Fig. 1: Schematic of FilTrun.

first introduce each of these modules and then proceed with describing the classifier.
Truncation. Given vectors w,z € R? and an integer 0 < k < d/2, we define the
k—truncated inner product of w and x as the summation of the element-wise product
of w and z after removing the top and bottom & elements, and denote it by (w, ).
More precisely, let z := w ® € R? be the element-wise product of w and = and
let s = (s1,--+,84) = sort(z) be obtained by sorting coordinates of z in descending
order. We then define

d—k
(3.1) (w, T = > si.

i=k+1

Note that when k = 0, this reduces to the normal inner product (w, ). Trunca-
tion is a natural method to remove “outliers” which might exist in the data due to
an adversary modifying some coordinates. Therefore, we expect the truncated inner
product to be robust against ¢y perturbations. The following lemma formalizes this.
The proof of Lemma 3.1 is given in Appendix A.

LEMMA 3.1. Given x,z',w € RY, for integer k satisfying || — x'|jo < k < d/2,
we have

[(w, @) — (w, )| < 8k[|lw © 2 .

In the context of our problem, this lemma suggests that if the budget of the

adversary is at most k, we can bound the difference between the k—truncated inner
product between w and the adversarially modified sample &’ and the (non-truncated)
inner product between w and the original sample . Recall that in the absence of
the adversary, the optimal Bayes classifier is a linear classifier of the form sgn({w, x))
with w = Y~ 'u. Hence, motivated by Lemma 3.1, one can argue that sgn({(w, z');)
would be robust against £y adversarial attacks with budget at most k assuming we
can appropriately control the bound of Lemma 3.1. However, this is not enough-it
turns out that in certain cases, we need to filter out some of the input coordinates
and perform the truncation on the remaining coordinates, which we call the surviving
coordinates.
Filtration refers to discarding some of the coordinates of the input. Intuitively,
these coordinates are the mon-robust features which do more harm than good when
the input is adversarially corrupted. More precisely, given a fixed and nonempty
subset of coordinates F' C [d], we define the classifier C}k) as follows:

5
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(3.2) C (a') := sgn((w(F), @)y ),

where
w(F) =S up,
and
(3.3) S =Eyp [(@r — pr)(@r — pr)" |y = 1]

is the covariance matrix of r conditioned on y, which is essentially the submatrix of
3 corresponding to the elements in F. Note that w(F) is the optimal Bayes classifier
of y given x r in the absence of the adversary. It is easy to see that when ¥ is diagonal,
w(F) = wp, but this might not hold in general.

Algorithm 3.1 and Figure 1 illustrate the classification procedure FilTrun given
in (3.2). So far we have not explained how the set F' is chosen and the algorithm
works with any such set given as an input. Later we discuss how the set F' is chosen
(see Remarks 3.4 and 3.15).

Algorithm 3.1 FilTrun

Input:
k: adversary’s £y budget
, Y: parameters of the Gaussian distribution
F: the set of surviving coordinates
x’: the corrupted input
Output:
Cy (@)
1: function FILTRUN(k, u, X, F, x')
2 Filtering: Construct pp,¥Xp and @’ corresponding to the coordinates in F'
3 Compute w(F) + X' up
4: Truncation: Compute (w(F), %)
5 Return sgn ((w(F), %))
6: end function

3.1.2. Upper bound on the robust classification error of FilTrun. The-
orem 3.2 below states an upper bound for the robust error associated with the clas-
sification algorithm FilTrun introduced in Section 3.1.1. In particular, this yields an
upper bound on the optimal robust classification error. The proof of Theorem 3.2 is
given in Appendix B.

THEOREM 3.2. Assume that pu,Y are given such that (2.3) holds. For a given
nonempty F C [d] and 0 <k < d/2, we have
(3.4)

k 1 =
ﬁH,E(CJ(!«“)»k) < m + o (

where Y is defined in (3.3), Sp is the diagonal part of Sp, and

16ky/2Tog |2 S "2 oo [¥(F) [0
Il (F)l2 ~ ,

[ (F)]l2

v(F):= E;l/2up.
6
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As a consequence, we obtain

(3.5)
Lo S o=+ min & (o), - SHVIPEUE Ze e ()
RS Valegd T i [v(F): |

Remark 3.3. Recall from Section 3.1.1 that F' is the set of coordinates used for
classification (i.e. the information in the coordinates F° is discarded). Therefore, we
essentially work with xr as an input. If the adversary is not present, the optimal clas-
sification error is achieved via the Bayes linear classifier which has error ®(||v(F)|2).
However, due to the existence of an adversary, we need to perform truncation which
influences the error through the second term inside the argument of ® in (3.4).

Remark 3.4. The bound in Theorem 3.2 can be used as a guide to choose the
set of surviving coordinates F'. More precisely, we can choose F' which minimizes the
right hand side in (3.5). Later, in Section 3.3, we discuss a simpler mechanism for
choosing F' when the covariance matrix ¥ is diagonal (see Remark 3.15 therein).

Here, we outline the proof of Theorem 3.2. Due to the symmetry, we only
need to analyze the classification error when y = 1. In this case, an error oc-
curs only when there exists some &’ € By(z, k) such that (w(F),x%)r < 0. But
since ||z — xF|lo < ||’ — x]|o < k, Lemma 3.1 implies that for such «’, we have
w(F),p)r — (w(F),zr)| < 8k|lw(F) ® xp|/s. Therefore, the robust classifica-
tion error is upper bounded by P ({(w(F),xzr) < 8k||w(F) ® F|/~). But the random
variable (w(F'),zr) is Gaussian with a known distribution, and the proof follows by
bounding ||w(F) ® r||s. See Appendix B for details.

When the covariance matrix X is diagonal, X is also diagonal and i},/ 22;1/ ‘=
Moreover, v(F) = vp where v = Y124, This yields the following corollary of
Theorem 3.2.

COROLLARY 3.5. Assume that p,% are given such that (2.3) holds and ¥ is di-
agonal. Then, for nonempty F C [d] we have

1 _ 16k+/21log d||vr||

L C(k), k)L ——+@ — =,

M»E( F ) —= 210gd + ||VF||2 ||VF||2
and in particular

1 _
LY (k) < —— in ¢
px(k) < Tlogd T AE

Now we discuss the above bounds via two examples, which we use as running
examples to discuss our results in the subsequent sections as well. In the following,
I; € R¥%4 and 14 € R denote the d x d identity matrix and the all-ones vector of
size d, respectively.

16k+/21og d||vF|| o
lvell2 — -

[vr |2

EXAMPLE 3.6. Let ¥ = I and p = —=14. In the absence of the adversary,

=3

the optimal Bayes classification error is ®(1). Moreover, simplifying the bounds in

Corollary 3.5, we get

1 = F 16k+/21ogd
Luz(C k) < +<1>< [F| _ 16ky2l0ad )

v2logd d VIF|

7

This manuscript is for review purposes only.



261

262

This is minimized when F = [d], resulting in

- () < 1 +<I)(1_16k\/210gd).
' V2logd Vd

Note that if k = o(\/d/logd), the upper bound is approzimately ®(1) which is the
optimal classification error in the absence of the adversary. This means that for
k = o(y/d/logd), the effect of the adversary can be completely neutralized. We will
show a lower bound for this example later in Section 3.2 (see Example 3.9 therein)
which shows that when k > v/dlogd, no classifier can do asymptotically better than
a naive classifier. This establishes a phase transition at k = \/d up to logarithmic
terms.

EXAMPLE 3.7. Let ¥ = I and p = (d_%,cd_%,cd_%, .. .,cd_%) where ¢ is cho-
sen such that |||l = 1, resulting in an optimal standard error of ®(1) in the absence
of the adversary. It turns out that the set F' that optimizes the bound in Corollary 3.5
is the set [2 : d], i.e. we need to discard the first coordinate. In addition to this, we
can see that if the classifier does not discard the first coordinate, it can neutralize
adversarial attacks with budget of at most d%_e, while discarding the first coordinate
makes the classifier immune to adversarial budgets up to dz=¢. In fact, although the
first coordinate is more informative compared to the other coordinates, due to this
very same reason it is more susceptible to adversarial attacks, and it can do more
harm than good when the input is adversarially corrupted. This example highlights
the importance of the filtration phase.

3.2. Lower Bound on Optimal Robust Classification Error: Strategies
for the Adversary. In this section, we provide a lower bound on the optimal robust
classification error. This is accomplished by introducing an attack strategy for the
adversary, and showing that given such a fixed attack, no classifier can achieve better
than the lower bound that we introduce. The strategy is best understood when
the covariance matrix is diagonal. Therefore, we first assume that ¥ is diagonal and
denote the diagonal elements of ¥ by o7, ..., 0%. We later use our strategy for diagonal
covariance matrices to get a general lower bound for arbitrary ¥ (see Theorem 3.11
at the end of this section).

Assume that the adversary observes realizations (x,y) ~ D generated from the
Gaussian mixture model with parameters p, Y, where X is diagonal. A randomized
strategy for the adversary with budget k is identified by a probability distribution
which upon observing such realizations (x,y), generates a random vector &’ that
satisfies P (||’ — x|jo < k| x,y) = 1. The goal of the adversary is to design this
randomized strategy in a way that the corrupted vector &’ bears very little information
(or even no information) about the label y. In this way, the loss in (2.2) will be
maximized. Before rigorously defining our proposed strategy for the adversary, we
illustrated its main idea when d = 1 in Figure 2.

Recall that v = ©~1/2u. Since ¥ is diagonal, v; = p;/o;. We will fix a set of
coordinates A C [d] and a specific value for the budget k(A) = ||vall1logd. We in-
troduce a randomized strategy for the adversary with the following properties: (i) it
can change up to k(A) coordinates of the input; and (ii) all the changed coordinates
belong to A, i.e. the coordinates in A€ are left untouched. We denote this adversarial
strategy by Adv(A4). Given A C [d], having observed (x,y), Adv(A) follows the pro-
cedure explained below. Let Z = (Zy,--- , Z4) € R% be a random vector that Adv(A)
constructs using the true input @. First of all, recall that Adv(A) does not touch the

8
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Fig. 2: The idea behind our proposed strategy for the adversary when d = 1. Assume
1 > 0 and the adversary observes a realization (z1,y) such that y = 1, meaning
that z; is a realization of N'(uy,0?) (i.e. the blue curve). If z; < 0, the adversary
leaves it unchanged, i.e. 27 = z1. On the other hand, if z; > 0, we compute the ratio
between the two densities (which is precisely p;(x1,y) shown in the figure), and with
probability p; (z1,y) we pick 2} from an arbitrary distribution (e.g. Uniform[—1,1]).
When y = —1, we follow a similar procedure, but reversed. It is easy to see that by
doing so, the distribution of x} is the same when y = 1 and y = —1, hence x| bears
no information about y.

coordinates that are not in A, i.e. for i € A° we let Z; = x;. For each i € A, the
adversary’s act is simple: it either leaves the value unchanged, i.e. Z; = x;, or it
erases the value, i.e. Z; ~ Unif[—1,1]-a completely random value between —1 and
+1. This binary decision is encoded through a Bernoulli random variable I; taking
value 0 with probability p;(x;,y) and value 1 otherwise. Here p;(z;,y) is defined as

exp(—(witypi)?/203) . N _
pi(xi,y) = exp(—(zi—yp:)?/207) if sgn(z;) = sgn(yp:)
0 otherwise

Note that the condition sgn(x;) = sgn(yu,) ensures that p;(x;,y) < 1. In summary,
for each i € A, Adv(A) lets

where I; = Bernoulli (1 — p;(z;,v;)), and the random variables I; are generated com-
pletely independently w.r.t. all the other variables. It is easy to see that the following
holds for the conditional density of Z 4 given y

Jza1y(2all) = fz,)y(za] = 1)

11 lJ;TJiQexp () S [—1,1]]] ,

i€A

(3.7)

where for i € A
oo
i =P(Li=1ly=1)=P(=1y= 1) = / 1= pilt, )] foyy (t]1)dt.
0
In other words, «; is the probability of changing coordinate ¢. Finally, Adv(A) checks

if the vectors Z and « differ within the budget constraint k(A) := ||[va||1 logd. Define
x’ as follows:

(3.8)

o7 i Sl < valhlogd
T o.t.w.

9
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It can be shown that with high probability, Z is indeed within the specified budget
and ' = Z. From this definition, it is evident that with probability one we have

(3.9) l&' — o < [lvall1 logd.

and hence Adv(A) is a randomized adversarial strategy that only changes the coordi-
nates in A and has budget k(A) = ||va|1logd. Now we use this adversarial strategy
to show the following result. The proof of Theorem 3.8 is given in Appendix C.

THEOREM 3.8. Assume that the covariance matriz 3 is diagonal and let v =
Y=Y2u. Then for any subset A C [d], we have

1

L5 (llvallilogd) > ®(||vac oed

2) —

The main idea behind this result and the above adversarial strategy is that due
to (3.7), Z4 is independent from y and since the coordinates of the input are inde-
pendent from each other, and since with high probability ' = Z, the coordinates in
A have no useful information for the classifier. Hence, the classifier can do no better
than the optimal Bayes classifier for the remaining coordinates in A€, which results
in a classification error of ®(||v4c||2)-

We now apply the bound of Thm 3.8 to Examples 3.6, 3.7 that we discussed in
Section 3.1.2.

EXAMPLE 3.9. Assume that p and % are as in Example 3.6. Applying the bound
in Theorem 3.8, we get

. |A] - | Al 1
—logd| >® T )
w2 (\/& o8 - d logd

Therefore, setting A = [d], we obtain a lower bound of almost ®(0) = 1/2 for adver-
sarial budget /dlogd. In other words, if the adversarial budget is more than v/dlogd,
asymptotically no classifier can do better than a random guess. This together with the
discussion in Example 3.6 establishes a phase transition around v/d (modulo logarith-
mic terms).

EXAMPLE 3.10. Assume that pp and ¥ are as in Ezample 3.7. Applying the bound
of Theorem 3.8 with A = [d], we obtain L}, (k) > ®(0) — 1/logd ~ 1/2 where
k= (d_% +¢(d —1)/Vd)logd =~ v/dlogd. Hence, comparing this to Example 3.7, we
find similar to Example 3.9 above that a phase transition occurs around adversarial
budget \/d up to logarithmic terms.

Now we state our general lower bound which holds for an arbitrary covariance
matrix. This is Theorem 3.11 below, whose proof is provided in Appendix D. Given p
and 3, we define the d x d matrix R where the ¢, j entryin Ris R; ; = %, ;/\/X:.:2; ;.
In other words, R; ; is the correlation coeflicient between the ¢th and the jth coordi-
nates in our Gaussian noise. Equivalently, with ) being the diagonal part of 3, we
may write

(3.10) R:=%"3%%" 3.

It is evident that since X is assumed to be positive definite, R is also positive definite.
Furthermore, we define u = (uy,...,uq) where

(3.11) u; = ﬂz 1<i<d.

10
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THEOREM 3.11. With w and R defined as in (3.10) and (3.11) respectively, for
all A C [d], we have

1 _ 1
L < us logd> > O(|lugel2) — —,
w,3 m” ||1 (H ||2) IOgd

where Cmn > 0 denotes the minimum eigenvalue of R.

Remark 3.12. Note that when 3 is diagonal, we have R = Ij, (nin = 1, and u =
v = X~Y2p. Therefore, the bound in Theorem 3.11 reduces to that of Theorem 3.8.

3.3. Optimality of FilTrun in the diagonal regime. We have already seen
for our two running examples that up to logarithmic terms, our lower and upper
bounds match (Examples 3.6 and 3.7 for upper bound, and their matching lower
bounds in Examples 3.9 and 3.10, respectively). First, in Section 3.3.1, we show that
our lower and upper bounds indeed match up to logarithmic terms in the diagonal
regime, i.e. when the covariance matrix is diagonal. Then, in Section This in particular
implies that our robust classification algorithm FilTrun is optimal in this regime.

3.3.1. Comparing the Bounds. In Theorem 3.13 below, in the diago-
nal regime we compare our upper bound of Corollary 3.5 and our lower bound of
Theorem 3.8. Proof of Theorem 3.13 is given in Appendix E. Recall that v := X~1/2p
and we assume (2.3) holds. When ¥ is diagonal and its diagonal entries are o7, ..., 03,
we have v; = u;/o;. Without loss of generality, we may assume that the coordinates
of v are decreasingly ordered such that

(3.12) 1] > el = -+ > vl
Given ¢ € [0,1], we define
(3.13) Ac i=min{ A : [[ypallz > )

THEOREM 3.13. If ¥ is diagonal and the coordinates in v are sorted as in (3.12),
then:
1. For 0 <c¢ <1, we have

» (|V[1;,\C]|1> 1 45 1—02—%
wE\ logd )~ 2logd V1=cylogd )’
2. For 0 < c <1, we have

% = 1
Lo s(lvpaglilogd) = (V1 = c2) — -—.
log d
Remark 3.14. Roughly speaking, Theorem 3.13 says that up to logarithmic terms,
we have

Ly, s(lvpaglh) = (/1 - c2).

Recall from our previous discussion that we are interested in studying adversarial
budgets scaling as d*, which justifies neglecting the multiplicative logarithmic terms.
Furthermore, following the proof of Theorem 3.13, the upper bound in the first part
is obtained by our robust classifier by setting F' = {A, ..., d}. Roughly speaking, the
classifier discards the coordinates in v which constitute fraction ¢ of the £ norm of v,

11
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Fig. 3: Asymptotic behavior in the diagonal regime: Illustration of scenarios with (a)
a phase transition, and (b) no phase transition

and performs a truncated inner product classification on the remaining coordinates.
But the /5 norm of the remaining coordinates is roughly /1 — ¢2, and the effect
of truncation is vanishing as long as the adversarial power is below [[v;. ll1 by a
logarithmic factor. Note that although the top coordinates in v are relatively more
important in terms of the classification power, due to the same reason, they are more
susceptible to adversarial attack.

Remark 3.15. In view of Theorem 3.13 and Remark 3.14, we can introduce the
following mechanism for choosing the surviving set F' for the adversary given adver-
sarial power k. Let 7(k) = min{r : |[vp1.[1 > klogd} and set F' = [r(k) : d]. Then
the classifier C%k) achieves the optimal robust classification error of almost ®(v/1 — ¢2)
where ¢ = ||Vl 2-

3.3.2. Asymptotic Analysis, Phase Transitions, and Trade-offs. In this
section, we perform a thorough analysis when the adversarial budget scales as d®
using our results in the diagonal regime. Here, we describe the main messages. (i)
We show that our bounds asymptotically match in the diagonal regime and FilTrun
is indeed optimal. (ii) Through the asymptotic analysis, we observe that in some
scenarios, a sharp phase transition on the optimal robust error occurs as we increase
a = log, k (See Figure 3-(a)). We have already given examples of such scenarios (e.g.
Example 3.6). In such cases, below the transition, i.e. when o < «g, the optimal
robust error is the same as the optimal standard error. And when we are above
the transition, i.e. when a > «g, any classifier becomes useless as the robust error
becomes % As a result, asymptotically speaking, there exists no tradeoff between
robustness and standard accuracy in scenarios where there is a sharp transition.

However, there are other scenarios where instead of a sharp phase transition, in
the asymptotic regime, the optimal robust error continuously increases as a function
of adversary’s budget (see Figure 3-(b)). In such scenarios, there exists a non-trivial
tradeoff between robustness and standard accuracy. I.e. to achieve optimal robust
error it is necessary to filter many informative coordinates which hurts the standard
accuracy. See Example 3.21 below.

In order to perform an asymptotic analysis, we assume that the dimension of
the space, d, goes to infinity. More precisely, we assume that we have a sequence
(D, (D) where for each d, u¥ € R? and X(? is a diagonal covariance matrix with
nonzero diagonal entries. We define

p(@ = (5@D)=1/2,,(@)

As usual, as in (2.3), in order to keep the optimal classification error in the absence
12
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of the adversary fixed, we assume that
(3.14) [ @]y =1  Vd.

Furthermore, without loss of generality, we assume that the coordinates in v are
sorted in a descending order with respect to their magnitude, i.e.

(3.15) D > A > s ) v,

To simplify the notation, we use £}(.) as a shorthand for L) s (.). We are mainly

interested in studying the asymptotic behavior of £}(kq) when kg is a sequence of
adversarial budgets so that k; behaves like d*. Motivated by Theorem 3.13, it is
natural to define

(3.16) A =min{A: yh e > ¢} for0<e<1.
Furthermore, for 0 < ¢ < 1, we define

d
(3.17) Wa(c) = logy v} oy 1

Note that since ¢ > 0, A{” > 1 and ||u[(1d:)/\gd>]||1 > 0. Therefore, ¥,4(c) is well-defined.

Furthermore, it is easy to verify the following properties for the function ¥,(.):
LEMMA 3.16. U4(.) is nonincreasing and Wq(c) € [—-1/2,1/2] for all ¢ € (0,1].
Proof. Note that

1
Wa(e) = logy 1) oy ll1 < logg [P |1 < logy(Val|lpV2) = logy Vi = 5.

On the other hand, note that for ¢ > 0, we have AY > 1 and Ui(c) > logy |I/§d)| =

log, ||V||sc. Furthermore, we have 1 = [[v(?|2 < d|v(¥|, which implies that
[ @] > 1/Vd. Consequently, U4(c) > log;1/v/d = —1/2. This completes the
proof. 0

Roughly speaking, Theorem 3.13 implies that if kq behaves like d¥¢(°), then
L*(kq) = ®(v/1 — c2). In order to transform this into a formal asymptotic argument,
we assume that for all ¢ € (0,1], the sequence W,4(c) is convergent, and we define
Uoo(e) := limg— 0o Y4(c) as the limit. Since ¥4(.) is nondecreasing, if the pointwise
limit W (.) exists, it is also nondecreasing and we may define

U (0) := lclg)l Ua(c).

Additionally, we can show the following lemma.
LEMMA 3.17. If U o(.) exists as above, then W (c) € [0,1/2] for all c € [0,1].
Proof. For all ¢ > 0 and all d, we have

d d
||V[(1:))\£d)]||l > HV[(li)/\(cd)]H% > 2.

Therefore

(d)

Uoole) = lim Py(e) = dh—>12<> log, ||1/[1:/\(Cd)]||1 > lidn_l)i(gfﬂogd c=0.

Sending ¢ to zero we also realize that U, (0) > 0. d
13
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Given these, we can formalize the following asymptotic behavior for the optimal
robust classification error. The proof of Theorem 3.18 below is given in Appendix F.
THEOREM 3.18. If U4(.) converges pointwise to a nondecreasing function ¥ :
[0,1] — [0,1/2] as above, then the following hold for all c € [0,1]:
L. Iflimsupy_, . log, ka < W (c), then limsup,_, o, L3(ka) < (V1 —c?).
2. If If liminf g o0 log, kq > Voo (c), then liminfy o L5(kq) > ®(V1 — ¢2).
It is sometimes more convenient to state the above theorem in terms of the pseudo
inverse of the function ¥ (.) defined as follows. For « € [0, 1], we define

- 1
(3.18) U M) :=inf{®(V1—c?): Uyo(c) > a} A 5
Note that since ¥, (c) < 1/2 for all ¢ € [0, 1], we have

1 1
—1 _ - -
U (o) = 5 Ve > 5
With this, we can restate Theorem 3.18 as follows.
COROLLARY 3.19. In the setup of Theorem 3.18, for a € [0,1] we have
1. Iflimsuplog, kg < « then limsup L£}(kq) < ¥ ! ().
2. Ifliminflog, kq > « then liminf £}(kq) > U 1 (a).

We now discuss this asymptotic result through some examples.

EXAMPLE 3.20. Let (D) and (4 be as in Example 3.6, i.e. 29 = I; and p(® =
14. Therefore, we have

1 1 1
(d) _ (sn(@dy=3 ,(d) _ ( — )
v 2 ST .
(X)) 2 Vd' Vi Vd

1

Vd

Using (3.16), we have AW = |dc?| and

4 1
Wy(c) zlogdHy[(l:)/\gd>]||1 = log, 75 =3

Therefore, sending d — oo, we realize that

SIS

Figure / illustrates Voo (.) and W 1(.) for this evample. Therefore, employing Corol-
lary 3.19, we realize that

1. If limsuplog, kg < 1/2 then limsup £3(kq) < ®(1)

2. Ifliminflog, kq > 1/2 then L*(kq) > 1/2.
In other words, we observe a phase transition around v/d in the sense that if the
adversary’s budget is asymptoticallly below V/d, the classifier can achieve the robust
classification error ®(1), i.e. as if there is no adversary, while if the adversary’s budget
is asymptotically above \/d, no classifier can achieve a robust classification error better
than that of a trivial classifier. This is consistent with the previous observations in
this case, i.e. Examples 3.6 and 3.9.

14
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Fig. 4: U.(.) and U !(.) for Example 3.20. This observe a phase transition at v/d
where below this threshold, adversary’s effect can completely be neutralized, while
above this threshold, the classifier can only achieve the trivial bound.

506 It is interesting to observe that not always we have a phase transition as in the
507 above example. Below we discuss an example in which we have no phase transition,
508 and the asymptotic robust classification error gradually increases as a function of the
509 adversary’s budget.

510 EXAMPLE 3.21. Let X = I;. Assume that d = 2" — 1 for some integer n and
511 define

N(d):<mmm Vo m)

513 More precisely, we split the unit lo norm of p'? into n blocks, where the first block
514 is the first coordinate, the second block is the second two coordinate, the ith block
515 constitutes of 2° coordinates, and the final block is the last d/2 coordinates. Moreover,
516 the power is uniformly distributed within each block. It is easy to see that for ¢ =

517 y/m/n for 1 <m <n, we have /\Ed) =2 —1 and

518 Ua(c) =Ty <\/f> = log, ( i{fg:;) = % +o(1).

519 Therefore, W4(.) converges pointwise to Voo (.) such that Wo.(c) = c?/2 for0 < c < 1.
520  Thereby, we have

521 U (a) = {?(1 22) 0<a<1/2

i 1/2<a<l.
522 Figure 5 illustrates Voo (.) and W 1(.) in this examples. As we can see, unlike Exam-
523 ple 3.20, we do not have a phase transition here. In fact, the asymptotic optimal robust
524 classification error continuously increases as a function of adversarial £y budget.
525 4. Conclusion. In this paper, we studied the binary Gaussian mixture model
526 under £y attack. We developed a novel nonlinear classifier called FilTrun that first
527 cleverly selects the robust coordinates of the input and then classifies based on a trun-
528 cated inner product operation. Analyzing the performance of our proposed method,
529 we derived an upper bound on optimal robust classification error. We further derived
530 a lower bound on this, and showed the efficacy of FilTrun: when the covariance
53

matrix of Gaussian mixtures is diagonal, FilTrun is asymptotically optimal.
15
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Fig. 5: Uo(.) and W !(.) for Examples 3.21. Unlike Example 3.20, we do not have a
phase transition here and the asymptotic optimal robust classification error continu-
ously increases as a function of the adversarial £y budget.

There are many directions to be pursued. Deriving a tighter lower bound and
resolving the optimality gap for the case of non-diagonal covariance matrices remains
open. Applying the key ideas of FilTrun, filtration and truncation, to a more com-
plicated setting (e.g. neural networks) can be of great importance from a practical
viewpoint. A crucial message of this paper is to emphasize the importance of non-
linear operations such as truncation for designing defense against ¢y attacks. Finally,
analyzing robust classification error with ¢y attacks for more complex stylized mod-
els such as multi-class Gaussian mixtures, two-layer neural networks, neural tangent
kernel models, etc. is a promising future direction.
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Appendix A. Proof of Lemma 3.1.

In this section, we prove Lemma 3.1. First we need to define some notations and
discuss some lemmas.

Given = (71,...,24) € R?, we define the sample average of = as Mean(zx) :=
Zle x;/d. Moreover, we define truncated sum TSumy(z) for k < n/2 as follows. Let
Ty Sz < STy be the set of sorted values in . We define

d—k

TSumg () := Z T(iy,

i=k+1

which is the truncated sum of the elements in « after removing the top and bottom &
values. For instance, TSumi(1,1,2,3,4,5) =1+ 2+ 3 4+ 4 = 10. Moreover, we define
the truncated mean of & as follows:

TMeany (x) := TZ#’;;S)

Note that when k& = 0, the above quantities reduce to the sum and the sample average,
respectively. It is straightforward to see that

(A.1) TSumy(x) — Zml < 2kM given |z;| < M V1<i<n.
i=1
LEMMA A.1. Assume that € = (z1,...,74) € R and ' = (xh,...,2)) € R¢

are given such that ' is identical to x in all but at most k < d/2 coordinates, i.e.
e — x'|lo < k. Moreover, assume that for some M < oo, we have |x;| < M for all
1<i<d. Then, if 1:21) < xEQ) <... < ZZ?Ed) are the sorted coordinates in x', we have

[Tl <M VE+1<i<d—k

Essentially, what Lemma A.1 states is that if we modify at most & coordinates in
a vector whose elements are bounded by M, in the resulting vector, after truncating
the top and bottom k coordinates, all the surviving values are also bounded by M.

Proof of Lemma A.1. Let i1,...,1; for I < k be the coordinates where x’ differs
from x, ie. z;; # x;J for 1 < 57 < 1. Note that if |:r;]| > M for any of 1 < j <,
then xgj will definitely fall into the top or bottom k coordinates in the sorted list
x’(l) <. < xzd), since all the d—1 > d—k remaining coordinates in &’ are bounded by
M. This means that all the surviving coordinates xzk FRITRRS ,x’( d—k) after truncating
top and bottom k coordinates in x’ are indeed bounded by M which completes the
proof. 0

LEMMA A.2. Assume that x = (z1,...,14) € R? is given such that |z;| < M for
all 1 <i < d. Also, assume that ' = (z,...,2,) € R? is identical to = in all but at
most k coordinates, i.e. ||& —x'||o < k. Then, we have

|TSumg(x) — TSumy(z')| < 6kM.

Proof. Let w51y < -+ < w5(q) and z;,(l) < < x;,(d) be the sorted elements in
19
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x and x’ with permutations o and o', respectively. Following the definition, we have

d—k

TSumk(m) = Z To(i) = Z o
i=k+1 wio—1(i)e{k+1,...,d—k}
d

=> 1o (i) e{k+1,...,d—k}] ;.
=1
Similarly, we have

d

TSumy( Zn[ i) e {k+1,. d—k}}x’
i=1

To simplify the notation, for 1 < i < d, we define

yi=1[c" ") e{k+1,...,d—k}]

and
Y, ;:11[0’ Yi)e{k+1,.. d—k}]x

Moreover, let

Ay:={1<i<d:o7'(i)e{k+1,...,d—k}and o’ (i) ¢ {k+1,...,d — k}}
Ay:={1<i<d:o (i) ¢{k+1,...,d—k}and o' (i) € {k+1,...,d — k}}
Ag:={1<i<d:o (i) e{k+1,...,d—k}
and o' "'(i) € {k+1,...,d — k} and x; # 2/}
A=A UA U As.
Note that if i ¢ A, either o= 1(i) §Z{k+1 ,d—k}and o'7(i) ¢ {k+1,...,d -k},

in which case y; =y} = 0; or 0~ ()e{k+1 ,d—k}, o'~ 1()€{k+1 ,d—k},
and z; = x}, in which case y; = y} = z; = z. ThlS means that y; = y; for ¢ §é A and

|TSumy(x) — TSumg(z')| < Z lyi — il

i€A
(A.2) ) ) )
< Z lyi — vl + Z lyi — yil + Z lyi — Y3l
i€A; i€Ay i€ A3

Note that for i € Ay, we have y} = 0 and y; = =;, implying |y; — yi| = |x;] < M. On
the other hand, for i € Ay, y; = 0 and y} = z}. But since o'~ 1(i) € {k+1,...,d—k},
using Lemma A.1, we have |y; — yi| = |zi] < M. Moreover, for i € Az, we have
y; = x; and y; = x}. Also, from Lemma A.1, we have |z;| < M. Thereby, |y; — yi| <
|z;| + |z}| < 2M. Putting all these together, we get

(A3) Yy —wil+ D i —vil+ Y lyi — il < M|A|+ M|Ag| + 2M|Ag|.
€A, i€ Aq i€As

Observe that

(A.4) Al <{1<i<d:o"7 i) ¢ {k+1,...,d—Ek}}| =2k
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Similarly,

(A.5)

On the other hand,
(A.6)

Using (A.4), (A.5), and (A.6) back into (A.3) and comparing with (A.2), we realize

that

| Ay| < 2k.

|As| < [{1<i<d:m #aj}| <k

|TSumy(x) — TSumg(z')| < 6kM,

which completes the proof.

The following is a direct consequence of Lemma A.2.

COROLLARY A.3. Given x, ' € R? and integer k satisfying |z —='||o < k < d/2,

we have

|TSumy(x) — TSumg(z')| < 6k min{||z| o, ||| 00 }-

We are now ready to give the proof of Lemma 3.1:
Proof of Lemma 3.1. We have

[(w, @) — (w, )| < [(w,z'), — (W, Z)i| + |(w, B)x — (w, )]

where in step (a) we have used |[w O ' —w O x| < ||’ — z|o < k together with

< J(w, @) — (w, @] + 2k]w © |

= |TSumg(w ® ') — TSumg(w © x)| + 2k||lw © z|| o

(a)
< 6kl|lw O x| 0o + 2k||w © ||
= 8k||w ® ||,

Corollary A.3. This completes the proof.

Appendix B. Proof of the Upper Bound (Theorem 3.2).

Given = € R? and y € {41}, define

We have

(O a,y) = s k)f(Cka); z'y).

(PP x 1) =1 |32’ € Bo(x, k) : (') £ 1

Using Lemma 3.1, for &’ such that ||&’ —x||p < 0, since || —zFp|lo < ||z’ — x| <,

we have

(w(F), @)k — (w(F),zr)| < 8kl|lw(F) O @r| .

This means that

132" € Bo(z, k) : (w(F),zp)r < 0] < 1[{w(F),zp) < 8k[w(F) © (o],

=1[3z" € Bo(z, k) : (w(F),xx)r < 0]
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and
(B.1)

Egy~p [P (CH 2, 1)y = 1] <P ((w(F),zr) < 8kl|w(F) © zp|w|y = 1).

Let X be as defined in (3.3) and let EF be the diagonal part of ¥ . Note that since

Y is positive definite, ¥ F is diagonal with positive diagonal entries. Hence, we may
write

(B.2) . )
lw(F) © zplo = [(EY?w(F) © (7 22r) s < B 0(F) ol S5 2 p | oo

Let o2 denote the ith diagonal coordinate of 3. Fix i € F' and note that conditioned

ony =1, we have x; ~ N(u;,02). On the other hand, with a := =3 1/2:1:1:, we have
j ~ ./\/(Uz i, 1). Note that ®(o; 'u;) is the optimal Bayes Clasmﬁcation error of y
given x; only, which is indeed not smaller than the optimal Bayes classification error
of y given the whole vector @, which is in turn equal to ®(||v|]2) = ®(1). Since ® is
decreasing, this implies o; 111; < 1. Consequently, by union bound, we have

P (||§~];1/2$F||oo >14 \/210gd) < Z]P’ (ai — o > \/2logd)
i€F
< d®(/2logd)

1

d—
T V27 2log
1

< —.
~ V2logd

—logd

Thereby, we get

1
1
(B.3) P (IS el > 202108 d |y =1) < .

On the other hand, we have

S1/2 S1/25—1/2 Sl/25 12
B4 B0 = 1SS0 (F) o < 1SS0 ool P (F) o,
where ”21/22—1/2”00 denotes the operator norm of 21/2251/2 induced by the vector

l norm. Using (B.2), (B.3), and (B.4) back into (B.1) and simplifying, we get

1 S1/2v—1/2
[ — < _
= mogd*P(W(F%mﬂ—wWWHEF S ol (Pl y = 1)

It is easy to see that conditioned on y = 1, (w(F),xr) ~ N(|v(F)|3,|v(F)|3).
Using this in the above bound, we get

Ee)~p [(P(CH 2, 1)y = 1]
! 3 <||V(F)|2 _ 16k\/WII§1F/22;”2|OO||u(F)|oo> |

<——
v2logd [ (F)ll2
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Due to the symmetry, we have the same bound conditioned on y = —1 which yields
the desired result.

Appendix C. Lower Bound in the Diagonal Regime (Theorem 3.8).
Before giving the proof of Theorem 3.8, we need the following lemma.

LemMmA C.1. For any random adversarial strategy with budget k which has a den-
sity function fgi|q,,, we have

L5l > 5P (Fara'1) = oy @] = D) + P (g (&) = 1) > oy @]y =1).

Proof. Note that the right hand side is indeed the Bayes optimal error associated
with the MAP estimator assuming that the classifier knows adversary’s strategy. Since
the classifier does not know the adversary’s strategy in general, the right hand side is
indeed a lower bound on the optimal robust classification error. 0

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Note that when A is empty, there is no adversarial modifi-
cation and the standard Bayes analysis implies that £}, 5,(0) = O(||v]l2) = @(||vacl2)
and the desired bound holds. Hence, we may assume that A is nonempty for the rest
of the proof.

Note that due to (3.9), the randomized strategy Adv(A) is valid for the adversary
given the budget ||v|1logd. Thereby we may use Lemma C.1 with Adv(A) to bound
Ly, s([[vall1 log d) from below. Before that, we show that with high probability under
the above randomized strategy for the adversary, recalling the definition of random
variables I; for i € A from (3.6), we have » ., I; < |[valilogd and hence ' = Z.
It is easy to see that for each i, P(I; = 1lly = 1) = P(I; = 1|y = —1); therefore,

P(I; =1) =P(I; = lly = sgn(u;))
- / (1 — pa(t, sgn ()] fougy (Hlsen (i) dt

_ /°° {1 exp(—(t + |mi])?/207)
0 exp(—(t — |wil)?/207)
=1-3(|ul)

— Erf(|1i]/v2)

< (ﬂlwl) AL

exp (—(t — |ul)?/207) dt

Hence, we have

PL=1)=P;=1ly=1)=P; =1ly=-1) < <\/Z|VZ> Al

Therefore, using Markov’s inequality, if I is the indicator of the event ) ., I; >
lall1 logd, we have

VAT ealil _ 1
Cl) PU=1)=PU=1y=1)=P{U=1y=-1)< ied < )
(©1) BPU=1)=B(I=1y=1) =B =1ly=—1) < Yeed < o

Now, we bound £}, s;(||vall1 log d) from below in the following two cases.
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Case 1: A =[d]. In this case, using Lemma C.1, we have

Chsvalilogd) > 5P (fury(@1) = Foy (@]~ 1)
@ 1 P (farjy(@'|1) = fory(@'| 1) |y =1)
= % (fary(@'[1) = fary(@'| = 1), I =0]y =1)
© Lp (fa1y(ZI1) = fa1,(Z1 = 1)y = 1)
= % (fz14(211) = fz,,(Z| - D]y =1) - %IP’(I —1ly=1)
(;) 1 1
=2 2logd’

where (a) uses the symmetry, (b) uses the fact that when I = 0, by definition we have
x' = Z, and (c) uses (3.7) and (C.1).
Case 2: A G [d]. Using Lemma C.1, we have

Ly, s([vallilogd) > P (forpy (2] = 1) > far, (2'[1) |y = 1)
>]P)(fw’|y(m/|_1)>fm’\y(m/‘1)7l O|y:1)
(©2) DB (f21,(Z1 = 1) > f2,(Z]1), T = =0ly=1)

> B (f2,(2 - 1) > f2,(Z])

S B (fa1y(21 = 1) > F21,(ZI0) |y = 1) -

where (a) uses the fact that by definition, when I = 0, we have ' = Z, and (b)
uses (C.1). Note that since Z; are conditionally independent given y, we have
fz1y(Z|y) = [z41y(ZalY) fz401y(Zacly).

But from (3.7), we have fz,,(Za|l) = fz,),(Za| — 1) with probability one. Using
this in (C.2), we get

* 1
Lrsvaliogd) > P (fz,e(Zacl = 1) > Sz, (ZacDly =1) = o
- 1
= cll2) — —.
(1) - g
We may combine the two cases following the convention that when A = [d],
= () and ||[v4c||2 = 0. This completes the proof. O

Appendix D. Proof of the General Lower Bound (Theorem 3.11).

In this section, we prove Theorem 3.11 by providing a general lower bound for
the optimal robust classification error which relaxes the diagonal assumption for the
covariance matrix. Our strategy is to approximate the covariance matrix by a diagonal
matrix and use our lower bound of Theorem 3.8. It turns out that the optimal robust
classification error is monotone with respect to the positive definite ordering of the
covariance matrix. Lemma D.1 below formalizes this. Intuitively speaking, the reason
is that more noise makes the classification more difficult, resulting in an increase in
the optimal robust classification error.
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LEMMA D.1. Assume that p € R and L1 and $o are two positive definite co-
variance matrices such that X1 < ¥o. Then for 0 < k < d we have

;‘L,El (k) S E;:,EQ (k)'

Proof. Let y ~ Unif(+1), &1 ~ N(yp,21) and x5 ~ N (yp, X2). Since Xy =< 3o,
we may write Yo = 31 + A such that A > 0. In addition to this, we may couple x1, x5
on the same probability space as x2 = ®1 + Z where Z ~ N (0, A) is independent
from all other variables. Now, fix a classifier C5 : RY — {41} and note that

Ly, (Co,k) =P (3a" € Bo(x2, k) : Ca(2') # )
=P 3’ € Bo(w1 + Z,k) : Co(x') # )
(D.1) =P (3" € Bo(z1,k) : Co(x” + Z) # )

>  inf P (EI:I:” € Bo(1, k) : Co(a", Z) # y)
Co:RIXRI—{£1}

Now, fix Co: RY x R — {£1} and note that using the independence of Z, we may
write

P <Hac” € Bo(z1,k) : Ca(z", Z) # y)
(D.2) =E {E [11 [Hm” € Bo(xy, k) : Co(x”, Z) # y} ‘z”

= /]P’ (EI:B” € By(x1, k) :52(93172) # y) fz(z)dz

But for z € R?, if we let 522(;1;) = Co(x, 2), we get

C
P (H:B” € Bo(xy, k) : CNQ(ml,z) + y> =P (Hw" € Bo(xy1, k) : 52’;(331) + y)

> i " : ~
- C12R‘}r—l>f{i1}]? (Elw € Bo(x1,k) : Ci(@1) # y)

=L, 5, (k).
Comparing this with (D.1) and (D.2), we realize that £y, 5,(C2, k) > L}, 5, (k). Since
this holds for arbitrary Cs, optimizing for Cy yields the desired result. O

Note that since X is positive definite, we have ¥ > al; where a > 0 is the
minimum eigenvalue of . Therefore, we may use Lemma D.1 together with the lower
bound of Theorem 3.8 for Ly, ,; (.) to obtain a lower bound for £y, (.). However,
it turns out that it is more efficient in some scenarios to first normalize the diagonal
entries of the covariance matrix. More precisely, define the d xd matrix R where the 7, j
entry in R is R; ; = %; j/1/2i:2;;. In other words, R; ; is the correlation coefficient
between the ith and the jth coordinates in our Gaussian noise. Equivalently, with v
being the diagonal part of X, we may write

(D.3) R:=Y %% 3.

It is evident that since X is assumed to be positive definite, R is also positive definite.
In fact, R is the covariance matrix of the normalized random vector &’ such that
x, = a:z/\/i” where @ ~ N(yp,X). Also , all the diagonal entries in R are equal
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to 1, and when ¥ is diagonal, R = I is the identity matrix. Furthermore, we define
u = (u1,...,uq) where

(D.4) u; = — 1<i<d.

In fact, with ' being the normalized of x as above, we have u = E[z'|y = 1]. In
Lemma D.2; we show that such coordinate-wise normalization does not affect the
optimal robust classiciation error. The main reason for this is that any coordinate-
wise product of a vector by positive values does not change the £y norm. This property
is unique to the combinatorial ¢, norm, and indeed does not hold for £, norms for
p=>1

LEMMA D.2. Given a vector a € R® with strictly positive entries, if we define
p € R and X' € R as pf; = ajpu; and ¥'; j = a;a;%; ;, then we have

()= Lo (k) WO<k<d
In particular, with u and R defined above, we have
L, (k) = L3, p(k) V0 <k <d.
Proof. Pick € > 0 together with a classifier C such that
(D.5) ns(k) > Lys(C k) —e

Let & ~ N(yp, %), ie. (z,y) ~ D, and define ' := a®x. Note that ' ~ N (yp', ).
Let D’ denote the joint distribution of (x’,Y"). Recall that by definition £,, x(C, k) =
E(z.4)~D [MaXzen,(zk) {(C; &', y)]. Note that @’ € By(x, k) iff |#’ — o < k. Since
all the entries in a are nonzero, this is equivalent to ||a ® @’ —a ® x||p < k which is in
turn equivalent to a ® ' € By(a ® x, k). Therefore, if a=! denotes the elementwise
inverse of a, we may write

[-:[.L,Z(C? k) = IE(m,y)ND [m”eé?(a(f({am,k) E(Ca a'_l O] IL’H, y):| .

Let C" be the classifier defined that C'(z) := C(a ® ). With this, we can rewrite the
above as

Lu,E(Cu k) = E(m,y)wD [ g(c/; iLJ,, y):|

max
x' €Bo(a®x,k)
=E@ y~p (e’
(@' y)~D |:m”61}31(?();’,k) €z y)]
= LM/VZ/ (C/’ ]{,’)
> Ly s (k).
Comparing this with (D.5) and sending to zero, we realize that £}, s(k) > £}, s (k).

Changing the order of (u, ) and (u/,Y’) and replacing a with a=! yields the other
direction and completes the proof. 0

Using the above tools, we are now ready to prove Theorem 3.11.
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Proof of Theorem 5.11. Note that since X is positive definite, R is also positive
definite and (i, > 0. Moreover, we have R = (ninlg. Therefore, using Lemmas D.1
and D.2 above, we realize that for all k, we have

(D.6) (k) =Ly r(k) > Ly, (k).

Since (minlg is diagonal, we may use our lower bound of Theorem 3.8 with v =
(Cminla)~Y?u = w/\/Cuin to obtain the following bound with holds for all A C [d]

. 1 _ 1
s (Tl logd) > ()~ o
The proof is complete by comparing this with (D.6). 0

Appendix E. Proof of Theorem 3.13.

We use the bound in Corollary 3.5 with F' = [A. : d], which simplifies into the
following with k = ||y 111/ log d:
(E.1)

Vgl 1 - lvpaag v, allee 16v/2
L < < (i) . — < < .
“(l%d < Valoga * * \Irpeals lopeagl: Viogd

Note that we have
(E.2) Wi lls =1 = [l all3 > 1= ¢
On the other hand,

lvpaa v allse = Ivpadllva
< vpagls
< vl
-1

(E.3)

Substituting (E.2) and (E.3) back into (E.1), we get

(E4) L:ﬁz <||V[11>\c]|1 n (i) ( /1 _ 8*2 - 16\/5)

logd ) ~ 2logd V1 —c%y/logd

Furthermore, with A = [1: A.], the bound in Theorem 3.8 implies that

(E£5) Lo (il logd) = B(V1 =) — o

This completes the proof.

Appendix F. Proof of Theorem 3.18.

Note that since Ug4(.) is nondecreasing for all d, if U (c) = lim ¥y(c) exists,
U (.) is indeed nondecreasing and ¥, (0) is well-defined.

Part 1 First we assume that ¢ € (0,1). Since Yo (c) = limPy(c) and
loglogd/logd — 0, limsuplog, kq < Yo (c) implies that for d large enough, we have

loglogd
logdk:d<\lld(c)— igi .
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Thereby,

(d)
loglogd 4 || [1: >\(d) ||1

@
logakia <1ogally oyl = T57g~ = 108 — 507

Hence, Theorem 3.13 implies that

||V <d)||1 1 _ 16+/2
Lok < £ | =X ) < +q>< 1026f>,

log d ~ 2logd V1 —c2y/logd

Sending d to infinity, we get limsup £5(kqs) < ®(v1—c2). Next, we consider ¢ =
0. Note that since Wo(.) is nondecreasing, limsuplog,kq < ¥oo(0) implies that
limsuplog, kg < ¥ ( ) for all ¢ > 0. Consequently, the above bound implies
that limsup £*(kq) < ®(v/1 —¢?) for all ¢ > 0. Sending ¢ to zero, we realize that
limsup £*(kq) < ®(0). Finally, for ¢ = 1, note that the classifier that always outputs 1
has misclassification error at most 1/2. This s implies that irrespective of the sequence
kq, we always have limsup £};(kq) < 1/2 = ®(v/1 — 12) and the bound automatically
holds for ¢ = 1.

Part 2 First we assume that ¢ € (0,1]. Similar to the first pare, liminflog, kq >
U (c) implies that for d large enough, we have

loglogd

log, kq > Wy(c) +

)

log d
and

loglogd

log, kq > log, ”V[l )\(d)]”l + W =lo gd(logdHVl )\(d)]H 1)-

Hence, Theorem 3.13 implies that
L5(ka) = L(log dHV L) Z (V1 =) -

Sending d — oo, we get liminf £j(kq) > ®(v/1—c?). For the case ¢ = 0, note
that irrespective of the sequence kq, we always have Lj(kq) > L£35(0) = ®(v1 —02).
Thereby, the result for ¢ = 0 automatically holds.
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