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Routing for Traffic Networks With
Mixed Autonomy

Daniel A. Lazar , Samuel Coogan , Member, IEEE, and Ramtin Pedarsani , Member, IEEE

Abstract—In this article, we propose a macroscopic
model for studying routing on networks shared between
human-driven and autonomous vehicles that captures the
effects of autonomous vehicles forming platoons. We use
this to study inefficiency due to selfish routing and bound
the price of anarchy (PoA), the maximum ratio between
total delay experienced by selfish users and the minimum
possible total delay. To do so, we establish two road capac-
ity models, each corresponding to an assumption regard-
ing the platooning capabilities of autonomous vehicles.
Using these, we develop a class of road delay functions,
parameterized by the road capacity, that are polynomial
with respect to vehicle flow. We then bound the PoA and
the bicriteria, another measure of the inefficiency due to
selfish routing, for general networks with multiple source-
destination pairs. We find these bounds depend on: the
degree of the polynomial in the road delay function; and the
degree of asymmetry, the difference in how human-driven
and autonomous traffic affect road delay. We demonstrate
that these bounds recover the classical bounds when no
asymmetry exists. We show the bounds are tight in certain
cases and that the PoA bound is order optimal with respect
to the degree of asymmetry.

Index Terms—Game theory, transportation networks.

I. INTRODUCTION

IN RECENT years, automobiles are increasingly equipped
with autonomous and semiautonomous technology, which

has potential to dramatically decrease traffic congestion [1].
Specifically, autonomous technologies enable platooning, in
which these vehicles automatically maintain short headways
between them via adaptive cruise control (ACC) or cooperative
ACC (CACC). ACC uses sensing such as radar or LIDAR
to maintain a specific distance to the preceding vehicle with

Manuscript received December 8, 2019; revised June 25, 2020; ac-
cepted July 19, 2020. Date of publication August 28, 2020; date of cur-
rent version May 27, 2021. This work was supported in part by NSF un-
der Grant 1749357 and in part by UC Office of the President under Grant
LFR-18-548175. Recommended by Associate Editor B. De Schutter.
(Corresponding author: Daniel A. Lazar.)

Daniel A. Lazar and Ramtin Pedarsani are with the Department of
Electrical and Computer Engineering, University of California, Santa
Barbara, Santa Barbara, CA 93106 USA (e-mail: dlazar@ucsb.edu;
ramtin@ucsb.edu).

Samuel Coogan is with the School of Electrical and Computer
Engineering and the School of Civil and Environmental Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
sam.coogan@gatech.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2020.3020059

Fig. 1. Social planner can decrease overall travel times by make
routing decisions that utilize autonomous vehicles’ ability to platoon,
and choosing different routes for human-driven vehicles (blue) and au-
tonomous vehicles (purple). (a) When vehicles route selfishly, vehicles
pack onto a congested road. (b) In optimal routing, only autonomous
vehicles are sent onto the road most amenable to platooning.

faster-than-human reaction time, and CACC augments this with
vehicle-to-vehicle communications.

When all vehicles are autonomous, the use of platooning has
the potential to increase network capacity as much as threefold
[2] by enabling synchronous acceleration at green lights [3].
However, the presence of human-driven vehicles—leading to
mixed autonomy—makes much of these benefits unclear.

Moreover, even in the absence of autonomous capabilities, it
is well known that if drivers route selfishly and minimize their in-
dividual traffic delays, this does not in general minimize overall
traffic delay. Understanding the extent of this phenomenon can
help city planners—if selfish routing does not adversely affect
travel delay too much, then it may not be necessary to try to
control vehicle flow using schemes such as tolling. Alternatively,
if selfishness can lead to much worse road delay, then a city
planner may wish to try to control human routing decisions. See
Fig. 1 for an example of selfish routing and optimal routing in
mixed autonomy.

The ratio between traffic delay under worst case selfish routing
and optimal routing is called the price of anarchy (PoA) and is
well understood for networks with only human-driven vehicles
[4]–[8]. Many such works also bound the bicriteria, which
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Fig. 2. Road network with PoA and bicriteria that grow unboundedly
with ζ when considering 1/ζ units of human-driven flow and 1 unit of
autonomous flow demand, with ζ ≥ 1. Function arguments x and y,
respectively, denote human-driven and autonomous vehicle flow on a
road.

quantifies, for any given volume of vehicle flow demand, how
much additional flow can be routed optimally to result in the
same overall latency as the original volume of traffic routed
selfishly. Other studies have bounded the PoA with multiple
modes of transportation [9], [10]. However, these prior works
require assumptions that do not capture vehicle flow on roads
shared between human-driven and autonomous vehicles, leaving
open the question of the PoA in mixed autonomy. In fact, we
show that these previous results do not hold, and the PoA for
roads with mixed autonomy can in general be unbounded!

Motivated by this observation, in this article, we provide
novel bounds on the PoA and bicriteria that depend on the
extent to which platooning affects road delay, as well as the
degree of the polynomial describing road delay. To do so, we
use two models that describe road capacity as a function of the
fraction of vehicles on the road that are autonomous; each model
corresponds to a different assumption regarding the technology
that enables platooning. We use these capacity models with a
known polynomial road delay function, and, for this class of
latency functions, we bound the PoA and bicriteria. We develop
two mechanisms for bounding the PoA, which yield bounds that
are tighter depending on platoon spacing and polynomial degree.
In our development, we provide the main elements of our proofs
and defer proofs of the lemmas to the appendix.

In our formulation, the benefit due to the presence of au-
tonomous vehicles is limited to platoon formation, and the
probability that each vehicle is autonomous is independent of the
surrounding vehicles. While we acknowledge that autonomous
vehicles yield other benefits, such as smoothing traffic shock-
waves, we consider platooning because it is a mature technology
that is commercially available. Furthermore, if autonomous
vehicles actively rearrange themselves to form platoons, the re-
sulting capacity falls between the two capacity models presented
here [11].

Motivating Example: To show that the PoA bounds previously
developed for roads with only one type of vehicle (i.e., no
autonomous vehicles) do not hold, we present an example of
a road network with unbounded PoA (see Fig. 2). Consider
a network of two parallel roads, with road latency functions
c1(x, y) = 1 and c2(x, y) = ζx. On each road, the latency is
a function of the human-driven flow (x) and the autonomous
flow (y) on that road. Suppose we have 1

ζ units of human-driven
vehicle flow and 1 unit of autonomous traffic demand to cross
from node s to node t, with ζ ≥ 1. Optimal routing puts all

human-driven cars on the top road and all autonomous cars on
the bottom road; when vehicles route selfishly they all end up
on the bottom road. This yields a PoA of ζ + 1. The bicriteria
is also ζ + 1, as ζ + 1 times as much traffic, optimally routed,
yields the same total cost as the original amount of traffic at
Wardrop equilibrium.1 This examples leads us already to our first
proposition, which lays the foundations for the contributions of
this article.

Proposition 1: The PoA and bicriteria are in general un-
bounded in mixed autonomy.

Motivated by this proposition, we develop the notion of the
degree of asymmetry of a road and use this, in conjunction with
the degree of the polynomial cost function, to parameterize the
bound on the PoA. To summarize, we

1) show that previous PoA results do not hold for mixed
autonomy;

2) develop a realistic class of polynomial cost functions for
traffic of mixed autonomy;

3) develop two mechanisms for bounding the PoA using this
cost function with both capacity models;

4) bound the PoA and bicriteria and analyze the tightness of
our bounds.

Some of these contributions relate to our previous work. In
[12], we use similar capacity models and a latency function
based on M/M/1 queues to find optimal routing for a network
of two parallel roads. In another work, we consider maximizing
capacity, using the second capacity model in this article, via a
sequence of vehicle reorderings in which autonomous vehicles
influence human drivers [11].

This article also relates to [13], which presents a special
case of the bounds presented in this article. Lazar et al. [13]
considered the PoA and bicriteria in mixed autonomy only with
affine latency functions. The bounds presented there are very
loose; in fact, if autonomy increases the capacity of any road
in the network by a factor of four or more, the bound does not
hold at all. In contrast, the current article uses a new method
to derive an entirely new bound, which holds for arbitrarily
large capacity increase due to autonomy. Furthermore, in the
current article, we base our considered latency functions on two
capacity models, which are based on different assumptions of the
platooning capabilities of autonomous vehicles. Moreover, the
bounds are not limited to networks or roads with affine latency
functions; the current work considers a class of latency functions
that incorporates arbitrary polynomial degree.

II. RELATED WORK

A. Congestion Games and Wardrop Equilibria

Our article is related to the optimal traffic assignment prob-
lem, e.g., [14], which studies how to optimally route vehicles
on a network when the cost (i.e., delay) on a road link is a
function of the flow of vehicles that travel on that link. We are
concerned specifically with the relationship between optimal

1Although in this case, autonomous vehicles do not affect road delay, other
examples in Section V also yield an unbounded PoA with both vehicle types
affecting road delay.
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traffic assignment and Wardrop Equilibria, which occur when
drivers choose their paths selfishly. For a survey on literature
on Wardrop Equilibria (see [15]) De Palma and Nesterov[16]
described other notions of equilibria. Classic works on Wardrop
Equilibria and the associated tools for analyzing them include
those presented in [17]–[19].

In an important development, Smith [17] established the
widely used variational inequality and used it to describe flows
at Wardrop equilibrium, in which all users sharing an origin and
destination used paths of equal cost and no unused path had a
smaller cost. For any feasible flow z and equilibrium flow zEQ,
the variational inequality dictates that

〈c(zEQ), zEQ − z〉 ≤ 0 (1)

where z is a vector describing vehicle flow on each road, c(z)
maps a vector of flows to a vector of the delay on each road, and
〈·, ·〉 denotes the inner product of two terms. Note that in the
absence of an assumption about the monotonicity of c (see the
following section for a definition), the variational inequality is
a necessary but not sufficient condition for equilibria [16]. The
variational inequality is fundamental for establishing our PoA
bound.

B. Multiclass Traffic

Some previous works consider traffic assignment and
Wardrop Equilibria with multiclass traffic, meaning traffic with
multiple vehicle types, and transportation modes that affect and
experience road latency differently (e.g., [20]–[22]).

Florian [22] demonstrated how to calculate equilibria for a
multimodal system involving personal automobiles and public
transportation. They used a relaxation that assumed that public
transportation would take the path that would be the shortest in
the absence of cars. In the case of mixed autonomy, this is not a
fair assumption.

Dafermos [20] assumed that the Jacobian of the cost function
was symmetric and positive definite. Similarly, Hearn et al. [21]
dealt with a monotone cost function, i.e., satisfying the property

〈c(z)− c(q), z − q〉 ≥ 0 (2)

for flow vectors z and q.
However, traffic networks with mixed autonomy are in general

nonmonotone. To see this, consider a network of two roads
with costs c1(x, y) = 3x+ y + t1 and c2(x, y) = 3x+ 2y +
t2, where t1 and t2 are constants denoting the free-flow la-
tency on roads 1 and 2. This corresponds to a road in which
autonomous vehicles can platoon closely and another road on
which they cannot platoon as closely. The Jacobian of the cost
function is as follows: ⎡

⎢⎢⎢⎣
3 1 0 0

3 1 0 0

0 0 3 2

0 0 3 2

⎤
⎥⎥⎥⎦

which is not symmetric, and the vector z = [−1 2 0 0]T

demonstrates that it is also not positive semidefinite. Monotonic-
ity is closely related to the positive (semi-) definiteness of the

Jacobian of the cost function. To show that the monotonicity
condition is violated as well, consider that there are 2 units
of human-driven flow demand and 3 units autonomous flow
demand. With one routing in which all human-driven flow is
on the first road and all autonomous flow is on the second and
another routing with these reversed, we find that the monotonic-
ity condition is violated.

Similarly, Faroukhi et al. [23] proved that in heterogeneous
routing games with cost functions that were continuously differ-
entiable, nonnegative for feasible flows, and nondecreasing in
each of their arguments, then at least one equilibrium was guar-
anteed to exist. These mild conditions are satisfied in our setting.
For heterogeneous games with two types, they further prove a
necessary and sufficient condition for a potential function (and
therefore unique equilibrium) to exist. However, the condition
required can be considered a relaxation of the condition that
the Jacobian of the cost function be symmetric. While broader
than strict symmetry, this condition is still not satisfied in mixed
autonomy. Notably, they describe tolls that, when applied, yield
a cost function that satisfies this condition.

As described above, these previous works in multiclass traffic
require restrictive assumptions and therefore do not apply to the
case of mixed autonomy. In fact, in the case of mixed autonomy,
the routing game is not formally a proper congestion game, as
it cannot be described with a potential function. Nonetheless, in
this article, we adapt tools developed for such games to derive
results for mixed autonomous traffic.

C. Price of Anarchy (PoA)

There is an abundance of research into the PoA in nonatomic
congestion games, codified in [4]–[8]. In [8], Correa et al. devel-
oped a general tool for analyzing PoA in nonatomic congestion
games. Although their development is specific to monotone cost
functions, in this article, we broaden it to cost functions that are
not necessarily monotone. Also relatedly, we find that in the case
of no asymmetry, our PoA bound for polynomial cost functions
simplifies to the classic bound in [5] and [6].

The previously mentioned works consider primarily single-
type traffic. Perakis [9] considered PoA in multiclass traffic
using nonseparable, asymmetric, nonlinear cost functions with
inelastic demand. However, they restrict their analysis to the
case that the Jacobian matrix of the cost function is positive
semidefinite. Similarly, Chau and Sim [10] considered the PoA
for multiclass traffic with elastic demand with symmetric cost
functions and positive semidefinite Jacobian of the cost function.
As demonstrated earlier, these assumptions are violated in the
case of mixed autonomy.

D. Autonomy

In one line of research, autonomous vehicles are controlled
to locally improve traffic by smoothing out stop-and-go shock-
waves in congested traffic [24]–[32], optimally sending pla-
tooned vehicles through highway bottlenecks [33], [34], and
simultaneously accelerating platooned vehicles at signalized in-
tersections [2], [3]. Other papers investigate fuel savings attained
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using autonomous vehicles [35]–[38] or jointly controlling vehi-
cles on a highway to localize and eliminate traffic disturbances
[39]. Some works consider optimally routing and rebalancing
a fleet of autonomous vehicles [40], although these generally
consider a simpler model for road latency, in which capacitated
roads have constant latency for flows below their capacity, and
all roads are considered to be in this regime.

Some previous works have related models for road capacity
and throughput under mixed autonomy, in particular [3], [12],
[13], and [41]. Chen et al. [42] provided a capacity model
which assumed that all autonomous vehicles are platooned in
periodic platoons, each with the same number of vehicles and
the same number of human-driven vehicles between platoons.
In contrast, we consider two capacity models: one in which
autonomous vehicles can maintain a short headway behind any
vehicle they follow; and one in which autonomous vehicles are
placed randomly as the result of a Bernoulli process and only
platoon opportunistically. Another work shows that autonomy
can increase the total delay experienced by users [43].

In our previous work [13], we found the PoA for affine
latency functions, incorporating the first capacity model. This
is a special case of the results in this article, which goes beyond
the previous work by considering polynomial cost functions
and incorporating both capacity models, resulting in a much
broader class of functions. Furthermore, we introduce a novel
mechanism for finding the PoA in mixed autonomy, leading to
a tighter bound than the one previously found.

III. NETWORK MODEL

Consider a congestion game on a network of N roads, with
nonatomic drivers (meaning each control an infinitesimally
small unit of vehicle flow) traveling across m origin–destination
pairs, each pair associated with βi units of human-driven vehicle
flow demand and γi units of autonomous vehicle flow demand.
We use [N ] = {1, 2, . . . , N} to denote the set of roads. We
fully describe driver behavior on a network by using a vector
of vehicle flows, which describes the volume of vehicles of each
type that travels on each road. This vector has size equal to
twice the number of roads and uses alternating entries to denote
human-driven and autonomous vehicle flow on a road. We use
xi and yi to refer to human-driven and autonomous flow on road
i, respectively. Then, the flow vector z is as follows:

z = [x1 y1 x2 y2 . . . xN yN ]T ∈ R2N
≥0 .

We refer to this flow vector as a routing or a strategy. We
use X ⊆ R2N

≥0 to denote the set of feasible routings, meaning
routings that route all flow demand from their origin nodes to
their destination nodes while respecting conservation of flow in
the network.

When needing to distinguish between two vectors, we use v
and w in place of x and y and q in place of z. We assume that
human-driven and autonomous vehicles experience road delay
identically. To capture the differing effects of each type of flow
on a road’s latency, we construct cost function c(z) : R2N

≥0 →

R2N
≥0 as follows:

c(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(x1, y1)

c1(x1, y1)

c2(x2, y2)

c2(x2, y2)

. . .

cN (xN , yN )

cN (xN , yN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ci(xi, yi) is the latency on road i when xi units of human-
driven vehicles and yi units of autonomous vehicles use the road.
The social cost, which is the aggregate delay experienced by all
users of the network, is then C(z) := 〈c(z), z〉. A social planner
then wishes to find the socially optimal routing, which is the
feasible routing that minimizes the social cost, and therefore
solves the following optimization:

min
z∈X

C(z) .

In contrast, selfish users in a Wardrop equilibrium do not try to
minimize the social delay. Instead, they selfishly choose routes.
This implies that if a route has positive flow on it, all other routes
between the same source–destination pair have equal or greater
delay. In the following sections, we develop models for road
capacity and road delay in order to construct the cost functions.

A. Capacity Models

We model the capacity of a road under two assumptions:
first, autonomous vehicles can platoon (follow closely) behind
any vehicle; and second, autonomous vehicles can only platoon
behind other autonomous vehicles. Let di denote road length
times the road’s nominal velocity and let h̄i and hi denote
the nominal space taken up by a platooned and nonplatooned
vehicle, respectively. The capacity will be a function of the au-
tonomy level of the road, denoted by α(xi, yi) = yi/(xi + yi).
We define the capacity of a road as the number of vehicles
that can travel on a road at the road’s nominal velocity. This
is calculated by dividing the length of the road by the average
space taken up by a car on the road, which is a function of
autonomy level, and multiplying it by the free-flow velocity of
the road. We formalize this in the following proposition.2

Proposition 2: Assume that vehicles are placed on a road as
the result of a Bernoulli process. If autonomous vehicles can
platoon behind any vehicle, therefore occupying road length h̄i

when traveling at nominal velocity, and human driven vehicles
do not platoon (therefore occupying road length hi at nominal
velocity), then the capacity is

mi(xi, yi) =
di

α(xi, yi)h̄i + (1− α(xi, yi))hi
. (3)

If autonomous vehicles only platoon behind other autonomous
vehicles and human driven vehicles cannot platoon, then the

2Found in [12], contemporaneously in [41].
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Fig. 3. Capacity models 1 and 2. In capacity model 1 (left), au-
tonomous cars can platoon behind any vehicle, and therefore take up
length h̄ when traveling at the free-flow velocity. In capacity model 2
(right), autonomous vehicles can only platoon behind other autonomous
vehicles; in that case, they take up length h̄, but if following a human-
driven vehicle, they take up length h. Human-driven vehicles always take
up length h.

capacity is

mi(xi, yi) =
di

α2(xi, yi)h̄i + (1− α2(xi, yi))hi
. (4)

Proof: We first justify the proposition for the first capacity
model. Autonomous vehicles follow any vehicle with the same
headway (occupying total space h̄i), as do human-driven vehi-
cles with a different headway (occupying hi). The space taken
up by an average vehicle, as the number of vehicles grows large,
is a weighted combination of those two spacings that depends
on the autonomy level. Note that this capacity model does not
depend on the ordering of the vehicles.

For the second capacity model, we assume that the vehicles
are placed as the result of a Bernoulli process with parameter
αi. Consider M vehicles, each with length L, with sm denoting
the headway of vehicle m. Note that the front vehicle will have
sm = 0. The expected total space taken up is, due to linearity of
expectation

E

[
M∑

m=1

L+ sm

]
= ML+

M−1∑
m=1

E[sm]

= (M − 1)(α2(xi, yi)h̄i + (1− α2(xi, yi))h) + L .

Then, as the number of vehicles grows, the average space occu-
pied by a vehicle approaches α2(xi, yi)h̄i + (1− α2(xi, yi))h,
yielding the above expression for capacity model 2. �

Fig. 3 provides an illustration of the technology assumptions.
To make the meaning of nominal vehicle spacing more con-
crete, we offer one way of calculating spacing: let L denote
vehicle length, and τh,i and τa,i denote the reaction speeds of
human-driven and autonomous vehicles, respectively. Let vi be
the nominal speed on road i, which is likely the road’s speed
limit. Then, we consider h̄i = L+ viτa,i and hi = L+ viτh,i.3

3In general, we consider hi ≥ h̄i, but we do not formally make this assump-
tion. Our theoretical results hold even in the case that hi ≥ h̄i on some roads
and hj < h̄j on others.

B. Fundamental Diagram of Traffic (FDT)-Based
Delay Model

An FDT-based models of vehicle flow dictate a relation-
ship between vehicle flow and density in which flow increases
with density until the critical density is reached (uncongested
regime), after which the flow decreases as density increases
(congested regime) [44]. We consider a triangular FD with
respect to the total flow, where we model the critical density as
the capacity functions in (3) and (4). This leads to a flow-density
relationship as follows [45]:

Qi(φ
h
i , φ

a
i)

:=

⎧⎪⎨
⎪⎩
v̄i · (φh

i + φa
i), if φh

i + φa
i ≤ mi(φ

h
i , φ

a
i)

v̄i·mi(φ
h
i,φ

a
i)·(φ̄i−(φh

i+φa
i))

φ̄i−mi(φh
i,φ

a
i)

, if mi(φ
h
i , φ

a
i) ≤ φh

i + φa
i ≤ φ̄i

0, otherwise.

where φ̄i and v̄i, respectively, denote the jam density and free-
flow velocity on road i, and φh

i and φa
i denote the human-driven

density and autonomous vehicle density, respectively. Then,
using the relationship that vehicle flow is equal to the product of
the density and velocity, we find a relationship between road
delay and vehicle flow, where si is a binary argument that
indicates whether the road is congested

ci(xi, yi, si) =

{
di

v̄i
if si = 0

di

(
φ̄i

xi+yi
+ mi(xi,yi)−φ̄i

v̄i·mi(xi,yi)

)
if si = 1.

(5)

This leads to the following proposition [45].
Proposition 3: Using the FDT-based model for road latency

in mixed autonomy in (5), the PoA is infinite.
Proof: Consider a single road with a fixed autonomy level.

The worst case cost has the road in a congested state, and the
best case cost has it in an uncongested state. The ratio of these
costs is ci(xi, yi, 1)/ci(xi, yi, 0). If we consider a flow demand
that approaches zero, this quantity grows unboundedly.4 �

C. Bureau of Public Roads (BPR)-Based Delay Model

We now propose a model, similar to BPR model [22], [46],
[47], for the road delay incurred by mixed traffic resulting from
the capacity models derived above.

Assumptions 1: In the remainder, we assume the following
relationship between the flow of vehicles on a road and the delay
on the road:

ci(xi, yi) = ti

(
1 + ρi

(
xi + yi

mi(xi, yi)

)σi
)
. (6)

where ti denotes the free-flow delay on road i, and ρi and σi are
model parameters. Typical values for ρi and σi are 0.15 and 4,
respectively [47]. However, our solution methodology is valid
for any parameters such that ti ≥ 0, ρi ≥ 0, and σi ≥ 1.

Remark 1: This model of delay function assumes that the
density of vehicles on a road remains low enough that the
vehicle flow does not enter the congested regime, in which delay

4A similar proof applies for a more general FDT that is not necessarily
triangular, as well as in the case of only a single vehicle type.
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increases as flow decreases. In the absence of this assumption,
the PoA is trivially infinite, as shown in Proposition 3.

Remark 2: This choice of cost functions implies that road
delay is separable, meaning that the vehicles on one road do not
affect those on another. In the conference version of this paper
[13], we bound the PoA and bicriteria for some nonseparable
affine cost functions.

The class of cost functions we consider are not monotone,
meaning they do not necessarily satisfy (2), but are elementwise
monotone, defined in the following.

Definition 1: A cost function c : R2N
≥0 → R2N

≥0 is elementwise
monotone if it is nondecreasing in each of its arguments, i.e.,
dci(z)
dzj

≥ 0 ∀i, j ∈ [2N ].

IV. BOUNDING THE POA

In this section, we bound the PoA and bicriteria of traffic
networks with mixed autonomy. As established in Section I, the
PoA is in general unbounded in traffic networks with mixed
autonomy. However, we can establish a bound for the PoA by
parameterizing it as described in the following.

Definition 2: The degree of asymmetry on a road is the max-
imum ratio of road space utilized by a car of one type to a car
of another type on the same road while traveling at nominal
velocity. The maximum degree of asymmetry k is the maximum
of the above quantity over all roads in the network. Formally,
k := maxi∈[N ] max(hi/h̄i, h̄i/hi).

Note that we do not assume that one vehicle type affects delay
more than another type on all roads. For example, autonomous
vehicles may require shorter headways than human-driven ve-
hicles on highways but longer headways on neighborhood roads
to maintain safety for pedestrians.

Definition 3: The maximum polynomial degree, denoted by
σ, for a road network with cost functions in the form (6) is the
maximum degree of a polynomial denoting the cost on all roads
in the network: σ = maxi∈[N ] σi.

We use Ck,σ to denote the class of cost functions of the
form (6), with maximum degree of asymmetry k and maximum
polynomial degree σ, with cost functions using mi from either
capacity mode 1 in (3) or capacity model 2 in (4). Let

ξ(σ) := σ(σ + 1)−
σ+1
σ . (7)

Note that for σ ≥ 1, ξ(σ) < 1. With this, we present our first
bound.

Theorem 1: Consider a class of nonatomic congestion games
with cost functions drawn from Ck,σ, under Assumption 1. Let
zEQ be an equilibrium and zOPT be a social optimum for this
game. Then

C(zEQ) ≤ kσ

1− ξ(σ)
C(zOPT ) .

Proof: Given any road cost function c (and social cost C)
and equilibrium zEQ, we define an aggregate cost function cAGG

(and social cost CAGG) with corresponding equilibrium flow
fEQ, both parameterized by zEQ. This allows us to combine
human-driven and autonomous flow into one flow type in the
aggregate function so we can bound the PoA for the aggregate

cost function. We then find the relationship between the optimal
routing for the aggregate cost function to that of the original cost
function. Formally, the steps of the proof are as follows:

C(zEQ) = CAGG(fEQ) (8)

≤ 1

1− ξ(σ)
CAGG(fOPT) (9)

≤ 1

1− ξ(σ)
kσC(zOPT) . (10)

We begin by introducing the tool with which we bound the PoA
in (9). We then define cAGG and fEQ such that (8) holds and show
that fEQ is an equilibrium for cAGG. We discuss the structure
of the tool used to bound the PoA and provide an intuitive
explanation of how the chosen structure of cAGG leads to a tighter
PoA bound than an alternative choice. We then provide lemmas
corresponding to inequality (9), which bounds the PoA of this
new cost function, and (10), which relates the social cost of
optimal routing under cAGG to that of the original cost function
c. We defer proofs of the lemmas to the appendix.

We first introduce a general tool that we use for our results by
extending the framework established by Correa et al. [8], which
relies on the variational inequality to bound the PoA. We use the
following parameters:

β(c, q) := max
z∈R2N

≥0

〈c(q)− c(z), z〉
〈c(q), q〉

β(C) := sup
c∈C,q∈X

β(c, q) (11)

where 0/0 = 0 by definition, and C is the class of network
cost functions being considered. Then, the following lemma is
considered.

Lemma 1: Let zEQ be an equilibrium of a nonatomic con-
gestion game with cost functions drawn from a class C of
elementwise monotone cost functions.

a) If zOPT is a social optimum for this game and β(C) < 1,
then

C(zEQ) ≤ (1− β(C))−1C(zOPT ) .

b) If qOPT is a social optimum for the same game with
1 + β(C) times as much flow demand of each type, then

C(zEQ) ≤ C(qOPT ) .

The lemma and proof are nearly identical to that of Correa
et al. [8], extended to encompass nonmonotone, yet elementwise
monotone, cost functions.

We now explain our choice of cAGG and fOPT that yields (8)
then provide an intuitive explanation for this choice. Recall that
we define

zEQ =
[
xEQ
1 yEQ

1 xEQ
2 yEQ

2 . . . xEQ
N yEQ

N

]T
.

We define a new flow vector that aggregates the regular and
autonomous flows: fEQ = xEQ + yEQ, where zEQ ∈ R2N

≥0 and
xEQ, yEQ, fEQ ∈ RN

≥0. We define a new cost function cAGG that
is a mapping from flow vector (with one flow for each road)
to road latencies, i.e., cAGG : RN

≥0 → RN
≥0. We define cAGG so
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Fig. 4. Illustration of the geometric interpretation of the parameter
β(CAGG) where CAGG represents the class of aggregate cost functions.
Parameter β(CAGG) is an upper bound on the ratio between the size of
the shaded rectangle and the dashed rectangle. This is an upper bound
over all choices of cAGG

i ∈ CAGG and xEQ and yEQ ≥ 0.

that it has the same road costs with flow fEQ as c does with
flow zEQ. Note, however, that c is a mapping from flows, with
two flow types per road, to road latencies, again with each road
represented twice (c : R2N

≥0 → R2N
≥0 ). However, cAGG represents

each road once.
We formally define cAGG, which depends on the equilibrium

flow being considered, i.e., zEQ. This cost function is defined
below for both capacity models. In general terms, cAGG adds the
“costly” type of vehicle flow first, then adds the “less costly”
vehicle flow. If h̄i ≤ hi

cAGG
i,1 (fi) (12)

:=

⎧⎨
⎩
ti

(
1 + ρi

(
hifi
di

)σi
)

fi ≤ xEQ
i

ti

(
1 + ρi

(
h̄ifi+(hi−h̄i)x

EQ
i

di

)σi
)

fi > xEQ
i

cAGG
i,2 (fi)

:=

⎧⎨
⎩
ti

(
1 + ρi

(
hifi
di

)σi
)

fi ≤ xEQ
i

ti

(
1 + ρi

(
hif

2
i −(hi−h̄i)(fi−xEQ

i )2

difi

)σi
)

fi > xEQ
i

.

(13)

If h̄i > hi, then swap h̄i and hi above, and replace xEQ
i with

yEQ
i . In all cases, cAGG

i (fEQ
i ) = cj(x

EQ
j , yEQ

j ), where j ∈ [2N ]

and i = 
j/2� ∈ [N ]. Since the road latencies under cAGG(fEQ)
are the same as under c(zEQ), fEQ is an equilibrium for cAGG.

To provide some intuition as to why we add the “costly”
vehicle type first, consider the affine case with the first capacity
model. Correa et al. give a geometric interpretation of the pa-
rameter β(CAGG) when cost are separable, meaning road latency
only depends on one element of the flow vector. They show that
for any cost function drawn from CAGG, β(CAGG) provides an
upper bound on the ratio of the area of a rectangle above the cost
function curve to the area of a rectangle enclosing it, where the
enclosing rectangle has one corner at the origin. See Fig. 4 for
an illustration.

This interpretation provides the intuition that the more convex
a function can be, the greater β(CAGG) can grow. Thus, to make
our bound as tight as possible in our case, we add the costly
vehicle type first. In the affine case with the first capacity model,
this makes the class of cost functions concave. Then, the element
of this class that maximizes the size of the interior rectangle
relative to the exterior rectangle minimizes the concavity of the
function by setting xEQ = 0 or yEQ = 0. Thus, the PoA bound
does not depend on the degree of asymmetry. Although this
exact interpretation does not apply for σ > 1 or for the second
capacity model, the intuition is nonetheless useful.

With this intuition, we now present inequalities (9) and (10)
as lemmas, which we prove in the appendix.

Lemma 2: Consider a nonatomic congestion game with road
cost functions of the form (12) or (13), with maximum polyno-
mial degree σ. Then

CAGG(fEQ) ≤ 1

1− ξ(σ)
CAGG(fOPT)

where ξ(σ) = σ(σ + 1)−
σ+1
σ .

Lemma 3: Let c be a cost function composed of road costs
of the form (6) with maximum degree of asymmetry k and
maximum polynomial degree σ. Let cAGG be an aggregate cost
function of c, as defined in (12) and (13). Let the flow vector
zOPT be a minimizer of C and fOPT be a minimizer of CAGG,
with

∑
i∈[2N ] z

OPT
i =

∑
i∈[N ] f

OPT
i . Then

CAGG(fOPT) ≤ kσC(zOPT) .

We prove Lemma 2 by bounding β(C) for the class of ag-
gregate cost functions and applying Lemma 1. We analyze the
structures of c and cAGG to prove Lemma 3. With these lemmas,
the theorem is proved. �

Note that for k = 1 (i.e., no asymmetry), the PoA bound
simplifies to those in [5] and [6]. If the cost functions are affine
and there is no asymmetry, this reduces to the classic 4

3 bound
[4]. We characterize the tightness of this bound in the following
corollary.

Corollary 1: Given a maximum polynomial degree σ, the
PoA bound is order optimal with respect to the maximum degree
of asymmetry k.

We provide an example proving the corollary in Section V.
When considering road networks with low asymmetry, we can
establish another bound.

Theorem 2: Consider a class of nonatomic congestion games
with cost functions drawn from Ck,σ, under Assumption 1. Let
zEQ be an equilibrium and zOPT a social optimum for this
game. If kξ(σ) < 1, then

C(zEQ) ≤ 1

1− kξ(σ)
C(zOPT ) .

Proof: To prove this theorem, instead of going through an
aggregate cost function, we directly find β(C) for our class of
cost functions and apply Lemma 1. We do this in two lemmas:
we first find a relationship between the parameter β(c, v) and
the road capacity model mi(xi, yi), then we bound the resulting
expression.
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Fig. 5. From left to right: (a) Network from Example 1 with two-sided asymmetry. One unit of human-driven and one unit of autonomous flow cross
from node s to t. (b) Network from Example 2 with two-sided asymmetry. 1√

k
units of human-driven and one unit of autonomous flow cross from

node s to t.

Fig. 6. From left to right: (a) Comparison of the PoA of Example 1 with the upper bound, with σ = 1. (b) Comparison of the PoA of Example 2 with
the upper bound, with σ = 1. (c) Bicriteria of Examples 1 and 2 (with σ = 1), compared with the bicriteria bound.

Lemma 4: For cost functions of the form (6), the parameter
β(C) is bounded by

β(C)≤ max
i∈[N ],qi,zi∈R2

≥0

xi + yi
vi + wi

(
1−
(
mi(vi, wi)(xi + yi)

mi(xi, yi)(vi + wi)

)σ)
.

Lemma 5: For capacities of the forms (3) or (4)

max
i∈[N ],qi,zi∈R2

≥0

xi + yi
vi + wi

(
1−

(
mi(vi, wi)(xi + yi)

mi(xi, yi)(vi + wi)

)σ)

≤ kξ(σ).

These lemmas, together with Lemma 1, prove the theorem as
well as Theorem 3 below. �

Note that this bound may not necessarily be tighter in all
regimes so our new PoA bound ismin( kσ

1−ξ(σ) ,
1

1−kξ(σ) ). Though
we cannot in closed form determine the region for which it
is tighter, we can do so numerically. For example, for affine
cost functions with k = 2, kσ

1−ξ(σ) =
8
3 and 1

1−kξ(σ) = 2. In
Section V, we show via example that the bound in Theorem 2 is
tight in this case.

The method used for establishing Theorem 2 also gives a
bound on the bicriteria stated in the following theorem.

Theorem 3: Consider a class of nonatomic congestion games
with cost functions drawn from Ck,σ, under Assumption 1. Let
zEQ be an equilibrium for this game. If qOPT is a social optimum
for the same game with 1 + kξ(σ) times as much flow demand

of each type, then

C(zEQ) ≤ C(qOPT) .

As an example, if road delays are described by polynomials
of degree 4, and the maximum asymmetry between the spacing
of platooned and nonplatooned vehicles is 3, then the cost of
selfishly routing vehicles will be less than optimally routing
1 + 3 ξ(4) ≈ 2.61 times as much vehicle flow of each type.

V. ESTABLISHING LOWER BOUNDS BY EXAMPLE

In this section, we provide examples that give a lower bound
on the PoA for this class of networks and serve to illustrate the
tightness of the bounds. The examples are shown in Fig. 5 and the
comparison of the PoA and bicriteria are shown in Fig. 6. We dis-
cuss notions of one-sided and two-sided asymmetries: a network
has one-sided asymmetry if h̄i ≤ hi˜∀i ∈ [N ] (human-driven
cars always contribute more to road delay than autonomous cars)
or h̄i ≥ hi˜∀i ∈ [N ] (human-driven cars always contribute less
to road delay than autonomous cars); otherwise the network has
two-sided asymmetry. We provide two example networks (see
Fig. 5), one with two-sided asymmetry and one with one-sided
asymmetry. We compare the PoA and bicriteria in those net-
works to the upper bounds established earlier.

Through the first example, we prove Corollary 1. In this
example, we consider two roads, one of which is well-suited
for autonomous vehicles (such as a highway) and the other is
well-suited for human-driven vehicles (such as an urban road).
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Example 1: Consider the network of parallel roads in
Fig. 5(a), where one unit of human-driven and one unit of
autonomous flow wish to cross from node s to t. The roads have
costs c1(x, y) = (kx+ y)σ and c2(x, y) = (x+ ky)σ , where
k ≥ 1. In worst case equilibrium, all human-driven cars are on
the top road and all autonomous cars are on the bottom road. In
the best case, these routing are reversed. This yields a PoA of kσ .
To find the bicriteria, we calculate how much traffic, optimally
routed, yields a cost equal to 2kσ , the cost of the original traffic
volume at worst case equilibrium. We find that k

σ
σ+1 as much

traffic, optimally routed, yields this same cost.
We now analyze the setting in which autonomous vehicles

always increase the capacity of a road. In this case, the tightness
of our bound (which holds for two-sided asymmetry as well)
remains open.

Example 2: Consider the network of parallel roads in
Fig. 5(b), where 1√

k
unit of human-driven and one unit of

autonomous flow wish to cross from node s to t. The roads
have costs c1(x, y) = 1 and c2(x, y) =

k√
k+1

x+ 1√
k+1

y. At
equilibrium, all vehicles take the bottom road; optimally routed,
human-driven vehicles takes the top road and autonomous
vehicles take the bottom. This yields a PoA of 1 + k

2
√
k+1

.
Calculations similar to that in Example 1 yield a bicriteria of
(−1+

√
1+4

√
k)(1+

√
k)

2
√
k

.
For affine cost functions, σ = 1 so ξ = 1/4. The PoA bound

is then min( 4
4−k ,

4
3k) and the bicriteria bound is 1 + k/4. With

σ = 1, the first example has PoA k and bicriteria
√
k, and the

second example has PoA of order
√
k and bicriteria of order

k1/4. Accordingly, the first example shows that the PoA bound
is tight for k = 2 and the bicriteria bound is tight for k = 4. Note
that a realistic range for k is between 1 and 4.

Furthermore, for affine cost functions, the bound in Theorem 2
is tighter than that of Theorem 1 when the degree of asymmetry
is low. However, the bound in Theorem 1 scales much better for
high degrees of asymmetry. This effect is accentuated for cost
functions that have higher order polynomials—the regime for
which the bound in Theorem 2 is tighter shrinks as the maximum
polynomial degree grows.

As stated in Corollary 1, our bound is order optimal with
respect to the maximum degree of asymmetry, i.e., k. Comparing
the bound ( kσ

1−ξ(σ) ) with the PoA in Example 1 (kσ) shows that
for a fixed σ, the PoA upper bound is within a constant factor of
the lower bound, implying that the upper bound is order optimal
in k.

It is also worth noting that under the construction used in
Theorem 2, the bicriteria is related to the PoA through the
quantity β(C) [8]. Observe that Example 1 provides a bicriteria
of 2 for k = 4, implying β(C4) ≥ 1. Since the PoA is greater
than or equal to 1

1−β(C) , this mechanism cannot bound the PoA
for k ≥ 4. This leads us to rely on the mechanism developed for
Theorem 1 for networks with large asymmetry.

VI. CONCLUSION

In this article, we present a framework, similar to a congestion
game, for considering traffic networks with mixed autonomy.
To do so, we present two models for the capacity of roads with

mixed autonomy, each corresponding to an assumption about
the technological capabilities of autonomous vehicles, and we
define a class of road latency functions that incorporates these
capacity models. Using this framework, we develop two methods
of bounding the PoA and show that these bounds depend on the
degree of the polynomial describing latency and the difference
in the degree to which platooned and nonplatooned vehicles
occupy space on a road. In addition, we present a bound on the
bicriteria, another measure of inefficiency due to selfish routing.
We present that examples showing these bounds are tight in some
cases and recover classical bounds when human-driven and
autonomous vehicles affect congestion the same way. Moreover,
we show that our PoA bound is order optimal with respect
to the degree to which vehicle types differently affect latency.
Moreover, we show the limitations of the PoA framework when
considering the congested regime of vehicle flow.

Some directions for future work are as follows. The capacity
models presented assume that vehicle types are determined as
a result of a Bernoulli process; a more general capacity model
could incorporate autonomous vehicles that actively rearrange
themselves as to form platoons. Furthermore, autonomous ve-
hicles can affect vehicle flow in ways not limited to platooning.
In addition, our proposed latency function considers only the
effect of a vehicle on the road upon which it travels; a more
general latency function would consider interaction between
roads. Finally, the PoA bound is not shown to be tight but is
order optimal in the degree of asymmetry k, and a future work
could aim to close this gap. Nonetheless, this article presents
a framework that can be used in the future for studying traffic
networks in mixed autonomy.

APPENDIX

A. Proof of Lemma 1

We prove Lemma 1, which offers a useful tool for bounding
the PoA. To prove part (a)

〈c(qEQ), z〉 = 〈c(z), z〉+ 〈c(qEQ)− c(z), z〉
≤ 〈c(z), z〉+ β(c, qEQ)〈c(qEQ), qEQ〉
≤ C(z) + β(C)C(qEQ) (14)

and by the variational inequality, C(qEQ) ≤ 〈c(qEQ), z〉 for any
feasible routing z. Completing the proof requires that β(C) ≤ 1,
then replace the generic z with zOPT.

To prove part (b), elementwise monotonicity implies the
feasibility of (1 + β(C))−1qOPT, which routes the same volume
of traffic as zEQ. Using (1)

〈c(zEQ), zEQ〉 ≤ 〈c(zEQ), (1 + β(C))−1qOPT〉 . (15)

Then

C(zEQ) = (1 + β(C))〈c(zEQ), zEQ〉
− β(C)〈c(zEQ), zEQ〉 (16)

≤ (1 + β(C))〈c(zEQ), (1 + β(C))−1qOPT〉
− β(C)〈c(zEQ), zEQ〉 (17)

≤ C(qOPT) (18)
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where (17) uses (15) and (18) uses (14).

B. Proof of Lemma 2

We prove Lemma 2, an intermediary step for bounding the
PoA. We use Lemma 1 and boundβ(CAGG

σ ), where CAGG
σ denotes

the set of aggregate cost functions with maximum polynomial
degree σ. First, we will show that

β(CAGG
σ ) ≤ max

i∈[N ],fi,gi≥0

fi
gi

(
1−

(
fi
gi

)σi
)
.

For the remainder of the proof of the lemma, we drop the
aggregate superscript from aggregate cost functions. Then

β(CAGG
σ ) := sup

c∈CAGG
σ ,g∈X

max
f∈R[N]

≥0

〈c(g)− c(f), f〉
〈c(g), g〉

≤ sup
ci∈CAGG

σ ,gi≥0

max
fi≥0

fi
gi

(
1− ci(fi)

ci(gi)

)
.

Note that this expression equals 0 by definition when fi =
gi = 0; the supremum of this expression is therefore at least
0. Moreover, consider the case that gi < fi. Since ci is non-
decreasing, (1− ci(fi)

ci(gi)
) ≤ 0. Since gi ≥ 0 and fi ≥ 0, the full

expression is then bounded from above by 0, and is equal to 0
when gi = 0. Since we are maximizing this expression, we can
rule out gi < fi and only consider gi ≥ fi.

We will show that β(CAGG
σ ) ≤ maxi∈[N ],fi,gi≥0

fi
gi
(1−

( figi )
σi) by showing that ci(fi)

ci(gi)
≥ ( figi )

σi for either capacity

model. We will show this for a road in which h̄i ≤ hi, although
with the alterations discussed above, the same can be done for
a road on which h̄i > hi.

As mentioned above, we can neglect the case in which gi < fi.
Because of this, to bound the expression, we only need to bound
the following six cases:

1) capacity model 1, gi ≤ xEQ
i and fi ≤ xEQ

i ;
2) capacity model 1, gi > xEQ

i and fi ≤ xEQ
i ;

3) capacity model 1, gi > xEQ
i and fi > xEQ

i ;
4) capacity model 2, gi ≤ xEQ

i and fi ≤ xEQ
i ;

5) capacity model 2, gi > xEQ
i and fi ≤ xEQ

i ;
6) capacity model 2, gi > xEQ

i and fi > xEQ
i .

We will show that in all cases, ci(fi)
ci(gi)

≥ ( figi )
σi .

In the first case

ci,1(fi)

ci,1(gi)
=

1 + ρi

(
hifi
di

)σi

1 + ρi(
higi
di

)σi

≥
(
fi
gi

)σi

where the inequality follows from ci,1(fi)
ci,1(gi)

≤ 1. In the following
cases, we perform the same operation without comment.

In the second case

ci,1(fi)

ci,1(gi)
≥
(

hifi

h̄igi + (hi − h̄i)x
EQ
i

)σi

≥
(
hifi
h̄igi

)σi

≥
(
fi
gi

)σi

(19)

where (19) follows from h̄i ≤ hi.

In the third case

ci,1(fi)

ci,1(gi)
≥
(
h̄ifi + (hi − h̄i)x

EQ
i

h̄igi + (hi − h̄i)x
EQ
i

)σi

≥
(
fi
gi

)σi

where the final inequality follows from hi ≥ h̄i and fi ≤ gi.
The fourth case is equivalent to the first case. In the fifth case

ci,2(fi)

ci,2(gi)
≥
(

hifigi

hi(gi)2 − (hi − h̄i)(gi − xEQ
i )2

)σi

≥
(

hifigi
hi(gi)2

)σi

=

(
fi
gi

)σi

(20)

where (20) results from hi ≥ h̄i.
In the sixth case

ci,2(fi)

ci,2(gi)
≥
(
hi(fi)

2 − (hi − h̄i)(fi − xEQ
i )2

hi(gi)2 − (hi − h̄i)(gi − xEQ
i )2

× gi
fi

)σi

≥
(
hi(fi)

2

hi(gi)2
× gi

fi

)σi

=

(
fi
gi

)σi

(21)

where (21) results from ( figi )
2 ≥ (

fi−xEQ
i

gi−xEQ
i

)2, as gi ≥ fi.

As we have shown that ci(fi)
ci(gi)

≥ ( figi )
σi in all cases, we now

find that

β(CAGG
σ ) ≤ max

i∈[N ],fi,gi≥0

fi
gi

−
(
fi
gi

)σi+1

.

As this expression is concave with respect to fi, to maximize
this with respect to fi, we set the derivative of this expression
with respect to fi to 0

1

gi
− (σ + 1)

(f ∗
i )

σ

(gi)σ+1
= 0 ⇒ f ∗

i = (gi)(σ + 1)−
1
σ .

Plugging this in

β(CAGG
σ ) ≤ (σ + 1)−

1
σ

(
1− 1

σ + 1

)
= σ(σ + 1)−

σ+1
σ .

This, combined with Lemma 1 and the definition of ξ(σ),
completes the proof of the lemma.

C. Proof of Lemma 3

We prove the final intermediary step, bounding the difference
in social cost between the optimal routing for our intermediary
latency functions and the optimal routing for our original latency
function. As before, let z = [x1 y1 x2 y2 . . . xN yN ]T .
Then

kσci(x
OPT
i , yOPT

i )

≥ max
(
ci(x

OPT
i + yOPT

i , 0), ci(0, x
OPT
i + yOPT

i )
)

≥ cAGG
i (xOPT

i + yOPT
i )

and by definition of fOPT, CAGG(f) ≥ CAGG(fOPT) for any
feasible vector f with

∑
i∈[N ] fi =

∑
i∈[N ] f

OPT
i =

∑
i∈[2N ] zi,

so

kσC(zOPT) ≥
∑
i∈[N ]

(xOPT
i + yOPT

i )cAGG
i (xOPT + yOPT)

≥ CAGG(fOPT) .
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D. Proof of Lemma 4

This lemma and the following one together prove Theorem 2.
Using (11)

β(c, q) = max
z∈R2N

≥0∑
i∈[N ] tiρi

[(
vi+wi

mi(vi,wi)

)σi −
(

xi+yi

mi(xi,yi)

)σi
]
(xi + yi)∑

i∈[N ] ti

[
1 + ρi

(
vi+wi

mi(vi,wi)

)σi
]
(vi + wi)

≤ max
i∈[N ],zi∈R2

≥0

ρi

[(
vi+wi

mi(vi,wi)

)σi −
(

xi+yi

mi(xi,yi)

)σi
]
(xi + yi)

[1 + ρi(
vi+wi

mi(vi,wi)
)σi ](vi + wi)

(22)

≤ max
i∈[N ],zi∈R2

≥0

[(
vi+wi

mi(vi,wi)

)σi −
(

xi+yi

mi(xi,yi)

)σi
]
(xi + yi)(

vi+wi

mi(vi,wi)

)σi

(vi + wi)

= max
i∈[N ],zi∈R2

≥0

xi + yi
vi + wi

(
1−

(
mi(vi, wi)(xi + yi)

mi(xi, yi)(vi + wi)

)σi
)

≤ max
i∈[N ],zi∈R2

≥0

xi + yi
vi + wi

(
1−

(
mi(vi, wi)(xi + yi)

mi(xi, yi)(vi + wi)

)σ)
(23)

where the terms of the denominator being nonnegative imply
(22), since a term in the summation in the numerator that is
negative does not need to be accounted for in the upper bound.
Then, β(c, q) ≥ 0 implies (23), allowing us to consider only the
maximum allowable degree of polynomial.

E. Proof of Lemma 5

For capacity model 1

β(c, q) (24)

≤ max
i∈[N ],zi∈R2

≥0

xi + yi
vi + wi

×
⎛
⎝1−

⎛
⎝
(
hi − (hi − h̄i)

(
yi

xi+yi

))
(xi + yi)(

hi − (hi − h̄i)
(

wi

vi+wi

))
(vi + wi)

⎞
⎠

σ⎞
⎠

= max
i∈[N ],zi∈R2

≥0

xi + yi
vi + wi

(
1−

(
hixi + h̄iyi
hivi + h̄iwi

)σ)

≤ max
zi∈R2

≥0

xi + yi
vi + wi

(
1−

(
kxi + yi
kvi + wi

)σ)

:= max
zi∈R2

≥0

f(xi, yi, vi, wi). (25)

In (25), we use the Definition 2 of the maximum degree of
asymmetry. For ease of notation, we drop the subscripts for
f(x, y, v, w).

We now investigate this expression more closely, and show
that the maximum of this expression with respect to x and y
occurs at either x = 0 or y = 0. We do this by showing there
are no critical points with x > 0 and y > 0, and that outside of

a finite region, the function is decreasing with respect to both x
and y.

First, we show that there exist no critical points, meaning
points for which df

dx = df
dy = 0, for k > 1. We have

df

dx
=

kx+ y − ( kx+y
kv+w )σ(kx+ y + kσ(x+ y))

(v + w)(kx+ y)

df

dy
=

kx+ y − ( kx+y
kv+w )σ(kx+ y + σ(x+ y))

(v + w)(kx+ y)
.

Since k > 1, we conclude that df
dx �= df

dy for x > 0 and y > 0.
To show the second component, we see that

df

dx
≤ 1

v + w

(
1−

(
kx+ y

kv + w

)σ)
and

df

dy
≤ 1

v + w

(
1−

(
kx+ y

kv + w

)σ)
.

Therefore, for the region y > kv + w − kx, the function is
decreasing with x and y.

These two facts together imply that the maximum of f in the
first quadrant lies on either the x- or y-axis. Checking these two
candidate functions

f(x, 0, v, w) =
x(1− ( kx

kv+w )σ)

v + w

f(0, y, v, w) =
y(1− ( y

kv+w )σ)

v + w
.

These functions are concave with respect to x and y, with
minima at x∗ = ( 1

σ+1 )
1/σ kv+w

k and y∗ = ( 1
σ+1 )

1/σ(kv + w)
respectively. When plugging these in, we find that the solution
along the y-axis is greater, so

max
x,y≥0

f(x, y, v, w) = σ

(
1

σ + 1

)1+1/σ
kv + w

v + w
.

We then find that when restricted to capacity model 1

β(Ck,σ) ≤ max
v,w≤0

σ

(
1

σ + 1

)1+1/σ
kv + w

v + w

≤ kσ

(
1

σ + 1

)1+1/σ

= kξ(σ) .

For capacity model 2

β(c, q)

≤ max
zi∈R2

≥0

xi + yi
vi + wi

−
(

kx2
i + 2kxiyi + y2i

kv2i + 2kviwi + w2
i

)σ (
vi + wi

xi + yi

)σ−1

:= g(xi, yi, vi, wi).

We again find that k > 1 ⇒ dg
dx �= dg

dy . Furthermore

df

dx
≤ 1

v + w

(
1−

((
v + w

x+ y

)
kx2 + 2kxy + y2

kv2 + 2kvw + w2

)σ
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df

dy
≤ 1

v + w

(
1−

((
v + w

x+ y

)
kx2 + 2kxy + y2

kv2 + 2kvw + w2

)σ

so

kx2 + 2kxy + y2

x+ y
<

kv2 + 2kvw + w2

v + w

⇒ df

dx
< 0 and

df

dy
< 0 .

Using the same reasoning as above, we now just search the x-axis
and y-axis. As above, g(x, 0, v, w) is concave with respect to x
and g(0, y, v, w) is concave with respect to y, with maxima at
x = ( 1

σ+1 )
1/σ kv2+2kvw+w2

k(v+w) and y = ( 1
σ+1 )

1/σ kv2+2kvw+w2

v+w ,
respectively. Comparing these, we find the maximum is the latter,
so

max
x,y≥0

g(x, y, v, w) = σ

(
1

σ + 1

)1+1/σ
kv2 + 2kvw + w2

(v + w)2
.

Then, for capacity model 2

β(Ck,σ) ≤ max
v,w≤0

σ

(
1

σ + 1

)1+1/σ
kv2 + 2kvw + w2

(v + w)2

≤ σ

(
1

σ + 1

)1+1/σ

k

= kξ(σ) .

Together, this shows that regardless of capacity model,
β(Ck,σ) ≤ kξ(σ). The application of Lemma 1 completes the
proof.
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