Course Syllabus

ECE 189A Senior Computer Systems Project (Elective) 4 units

Catalog Description:
Student groups design a significant computer-based project. Groups work independently but may, if desired, cooperate to address subprojects within a larger overall project context, interacting as appropriate via interface specifications and informal meetings.

Prerequisites:
Consent of instructor; senior standing in computer engineering, computer science, or EE.

Text, References, and Software:

Topics Covered and Course Goals:
This course provides an over-arching design experience wherein the students actually go through an entire design cycle. In addition to the material covered in lecture format (which is organized around a set of milestones comprising a typical project development cycle) students learn how to work in teams, keep project notebooks, and report on their individual and collective progress. A rough timeline showing the milestones follows:
1. Project selection (concepts and rough breakdown) 1 week
2. Refined project (annotated block diagram with prose behavioral specifications) 1 week
3. System-level design (subsystem requirements and interface specs, component selection, software structural overview) 2 weeks
4. Detailed design (schematic drawings, Verilog source (if programmable logic used), final software structure plan) ... 4 weeks
5. Implementation of the hardware design (artwork for PCB fab, final schematics, engineering drawing, assembly drawing, parts kit, bill of materials) 2 weeks

The goals of the capstone project course are:
1. Provide each student with a team design experience
2. Learn the myriad of details that must be considered when creating a product, including all of the phases from concept to full demonstration and presentation.
3. Acquire presentation and progress estimating and reporting skills in a team environment.
4. Learn to keep a project notebook
5. Learn to select components, study their datasheets to extract interfacing details, and ultimately use commercial components in a real design.
6. Learn to plan, create, simulate, and develop low-level software that runs at the hardware/software interface.
7. Learn to draw schematics, create netlists, and plan and route a printed circuit board.

Class/Laboratory Hours:
Though some projects may do some early breadboarding or component evaluations in support of their component selection, there is no formal laboratory section for this course.

Contribution to Criterion 5
ECE189-A and its follow-on ECE189-B will prepare students for engineering practice by providing each student with direct participation in a group design project using commercial chips, modules, and surface-mount printed circuit board technology with implementation according to up-to-date engineering standards and conventions.

Contribution to Program Outcomes:

<table>
<thead>
<tr>
<th>Course Goals</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Prepared by: Steven Butner Date: October 9, 2007